--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut-base-sroie-metrics-combined-new results: [] --- # donut-base-sroie-metrics-combined-new This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5114 - Bleu: 0.0672 - Precisions: [0.7849898580121704, 0.7041284403669725, 0.6490765171503958, 0.6024844720496895] - Brevity Penalty: 0.0986 - Length Ratio: 0.3015 - Translation Length: 493 - Reference Length: 1635 - Cer: 0.7616 - Wer: 0.8389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:----------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | 3.7646 | 1.0 | 253 | 1.3802 | 0.0163 | [0.5175257731958763, 0.21962616822429906, 0.1293800539083558, 0.06369426751592357] | 0.0934 | 0.2966 | 485 | 1635 | 0.8225 | 0.9292 | | 1.2442 | 2.0 | 506 | 0.7108 | 0.0454 | [0.6456211812627292, 0.4930875576036866, 0.41379310344827586, 0.359375] | 0.0973 | 0.3003 | 491 | 1635 | 0.7755 | 0.8908 | | 0.8189 | 3.0 | 759 | 0.5739 | 0.0574 | [0.757700205338809, 0.6395348837209303, 0.5656836461126006, 0.4936708860759494] | 0.0947 | 0.2979 | 487 | 1635 | 0.7606 | 0.8539 | | 0.6444 | 4.0 | 1012 | 0.5114 | 0.0672 | [0.7849898580121704, 0.7041284403669725, 0.6490765171503958, 0.6024844720496895] | 0.0986 | 0.3015 | 493 | 1635 | 0.7616 | 0.8389 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.1.0 - Datasets 2.19.1 - Tokenizers 0.19.1