--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - wer model-index: - name: donut-base-sroie-metrics-combined-new results: [] --- # donut-base-sroie-metrics-combined-new This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1662 - Bleu score: 0.0215 - Precisions: [0.9469914040114613, 0.9204368174726989, 0.8938356164383562, 0.872865275142315] - Brevity penalty: 0.0237 - Length ratio: 0.2109 - Translation length: 698 - Reference length: 3310 - Cer: 0.7917 - Wer: 0.8253 - Cer Hugging Face: 0.7954 - Wer Hugging Face: 0.8274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu score | Precisions | Brevity penalty | Length ratio | Translation length | Reference length | Cer | Wer | Cer Hugging Face | Wer Hugging Face | |:-------------:|:-----:|:----:|:---------------:|:----------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:|:----------------:|:----------------:| | 0.5956 | 1.0 | 253 | 0.2372 | 0.0231 | [0.9258741258741259, 0.8890577507598785, 0.8519134775374376, 0.8180147058823529] | 0.0265 | 0.2160 | 715 | 3310 | 0.7922 | 0.8383 | 0.7969 | 0.8412 | | 0.2509 | 2.0 | 506 | 0.1730 | 0.0213 | [0.9425287356321839, 0.9217527386541471, 0.8969072164948454, 0.88] | 0.0234 | 0.2103 | 696 | 3310 | 0.7928 | 0.8285 | 0.7966 | 0.8306 | | 0.22 | 3.0 | 759 | 0.1777 | 0.0215 | [0.9469914040114613, 0.9188767550702028, 0.8921232876712328, 0.872865275142315] | 0.0237 | 0.2109 | 698 | 3310 | 0.7914 | 0.8282 | 0.7948 | 0.8306 | | 0.1687 | 4.0 | 1012 | 0.1662 | 0.0215 | [0.9469914040114613, 0.9204368174726989, 0.8938356164383562, 0.872865275142315] | 0.0237 | 0.2109 | 698 | 3310 | 0.7917 | 0.8253 | 0.7954 | 0.8274 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.1.0 - Datasets 2.19.0 - Tokenizers 0.19.1