--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut-base-sroie-metrics-combined-new results: [] --- # donut-base-sroie-metrics-combined-new This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4671 - Bleu: 0.0662 - Precisions: [0.785140562248996, 0.6825396825396826, 0.6197916666666666, 0.5626911314984709] - Brevity Penalty: 0.1007 - Length Ratio: 0.3035 - Translation Length: 498 - Reference Length: 1641 - Cer: 0.7528 - Wer: 0.8385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:----------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | 3.6559 | 1.0 | 253 | 1.5613 | 0.0007 | [0.5056179775280899, 0.1943127962085308, 0.07692307692307693, 0.02830188679245283] | 0.0058 | 0.1627 | 267 | 1641 | 0.8768 | 0.9436 | | 1.2493 | 2.0 | 506 | 0.6697 | 0.0409 | [0.6560509554140127, 0.5048309178743962, 0.4481792717086835, 0.39] | 0.0834 | 0.2870 | 471 | 1641 | 0.7766 | 0.8837 | | 0.9257 | 3.0 | 759 | 0.5168 | 0.0594 | [0.75, 0.6275862068965518, 0.5714285714285714, 0.5264797507788161] | 0.0968 | 0.2998 | 492 | 1641 | 0.7570 | 0.8499 | | 0.6416 | 4.0 | 1012 | 0.4671 | 0.0662 | [0.785140562248996, 0.6825396825396826, 0.6197916666666666, 0.5626911314984709] | 0.1007 | 0.3035 | 498 | 1641 | 0.7528 | 0.8385 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.1.0 - Datasets 2.19.1 - Tokenizers 0.19.1