--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut_experiment_1 results: [] --- # donut_experiment_1 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4233 - Bleu: 0.0659 - Precisions: [0.8058455114822547, 0.7440758293838863, 0.7013698630136986, 0.6590909090909091] - Brevity Penalty: 0.0908 - Length Ratio: 0.2942 - Translation Length: 479 - Reference Length: 1628 - Cer: 0.7576 - Wer: 0.8295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | 0.8942 | 1.0 | 253 | 0.5716 | 0.0571 | [0.7436974789915967, 0.6610978520286396, 0.6104972375690608, 0.5672131147540984] | 0.0889 | 0.2924 | 476 | 1628 | 0.7669 | 0.8416 | | 0.3794 | 2.0 | 506 | 0.4522 | 0.0594 | [0.770042194092827, 0.697841726618705, 0.6472222222222223, 0.6072607260726073] | 0.0876 | 0.2912 | 474 | 1628 | 0.7642 | 0.8415 | | 0.3017 | 3.0 | 759 | 0.4154 | 0.0642 | [0.8029350104821803, 0.7357142857142858, 0.6887052341597796, 0.6503267973856209] | 0.0895 | 0.2930 | 477 | 1628 | 0.7577 | 0.8320 | | 0.222 | 4.0 | 1012 | 0.4233 | 0.0659 | [0.8058455114822547, 0.7440758293838863, 0.7013698630136986, 0.6590909090909091] | 0.0908 | 0.2942 | 479 | 1628 | 0.7576 | 0.8295 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.19.1