--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut_experiment_2 results: [] --- # donut_experiment_2 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3855 - Bleu: 0.0663 - Precisions: [0.8273684210526315, 0.7703349282296651, 0.7285318559556787, 0.6842105263157895] - Brevity Penalty: 0.0883 - Length Ratio: 0.2918 - Translation Length: 475 - Reference Length: 1628 - Cer: 0.7539 - Wer: 0.8251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | 0.9517 | 1.0 | 253 | 0.5797 | 0.0543 | [0.7160751565762005, 0.6184834123222749, 0.5671232876712329, 0.5097402597402597] | 0.0908 | 0.2942 | 479 | 1628 | 0.7738 | 0.8500 | | 0.3907 | 2.0 | 506 | 0.4532 | 0.0590 | [0.7851063829787234, 0.711864406779661, 0.6657303370786517, 0.6220735785953178] | 0.0851 | 0.2887 | 470 | 1628 | 0.7610 | 0.8370 | | 0.3245 | 3.0 | 759 | 0.4102 | 0.0625 | [0.8008474576271186, 0.7397590361445783, 0.7011173184357542, 0.6611295681063123] | 0.0864 | 0.2899 | 472 | 1628 | 0.7593 | 0.8336 | | 0.2318 | 4.0 | 1012 | 0.3855 | 0.0663 | [0.8273684210526315, 0.7703349282296651, 0.7285318559556787, 0.6842105263157895] | 0.0883 | 0.2918 | 475 | 1628 | 0.7539 | 0.8251 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.19.1