File size: 2,906 Bytes
82fad32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
metrics:
- bleu
- wer
model-index:
- name: donut_experiment_5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut_experiment_5
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3987
- Bleu: 0.0661
- Precisions: [0.8020833333333334, 0.7375886524822695, 0.6994535519125683, 0.6601941747572816]
- Brevity Penalty: 0.0915
- Length Ratio: 0.2948
- Translation Length: 480
- Reference Length: 1628
- Cer: 0.7576
- Wer: 0.8280
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:|
| 0.3274 | 1.0 | 253 | 0.4698 | 0.0586 | [0.7707006369426752, 0.6956521739130435, 0.6582633053221288, 0.62] | 0.0857 | 0.2893 | 471 | 1628 | 0.7660 | 0.8432 |
| 0.2539 | 2.0 | 506 | 0.4198 | 0.0643 | [0.799163179916318, 0.7315914489311164, 0.6868131868131868, 0.6416938110749185] | 0.0902 | 0.2936 | 478 | 1628 | 0.7605 | 0.8313 |
| 0.224 | 3.0 | 759 | 0.3941 | 0.0658 | [0.8075313807531381, 0.7387173396674585, 0.7060439560439561, 0.6710097719869706] | 0.0902 | 0.2936 | 478 | 1628 | 0.7573 | 0.8283 |
| 0.1566 | 4.0 | 1012 | 0.3987 | 0.0661 | [0.8020833333333334, 0.7375886524822695, 0.6994535519125683, 0.6601941747572816] | 0.0915 | 0.2948 | 480 | 1628 | 0.7576 | 0.8280 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1
|