--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut_experiment_5 results: [] --- # donut_experiment_5 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3987 - Bleu: 0.0661 - Precisions: [0.8020833333333334, 0.7375886524822695, 0.6994535519125683, 0.6601941747572816] - Brevity Penalty: 0.0915 - Length Ratio: 0.2948 - Translation Length: 480 - Reference Length: 1628 - Cer: 0.7576 - Wer: 0.8280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | 0.3274 | 1.0 | 253 | 0.4698 | 0.0586 | [0.7707006369426752, 0.6956521739130435, 0.6582633053221288, 0.62] | 0.0857 | 0.2893 | 471 | 1628 | 0.7660 | 0.8432 | | 0.2539 | 2.0 | 506 | 0.4198 | 0.0643 | [0.799163179916318, 0.7315914489311164, 0.6868131868131868, 0.6416938110749185] | 0.0902 | 0.2936 | 478 | 1628 | 0.7605 | 0.8313 | | 0.224 | 3.0 | 759 | 0.3941 | 0.0658 | [0.8075313807531381, 0.7387173396674585, 0.7060439560439561, 0.6710097719869706] | 0.0902 | 0.2936 | 478 | 1628 | 0.7573 | 0.8283 | | 0.1566 | 4.0 | 1012 | 0.3987 | 0.0661 | [0.8020833333333334, 0.7375886524822695, 0.6994535519125683, 0.6601941747572816] | 0.0915 | 0.2948 | 480 | 1628 | 0.7576 | 0.8280 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.19.1