--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut_experiment_bayesian_trial_19 results: [] --- # donut_experiment_bayesian_trial_19 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5754 - Bleu: 0.0724 - Precisions: [0.8450413223140496, 0.7892271662763466, 0.7486486486486487, 0.7028753993610224] - Brevity Penalty: 0.0941 - Length Ratio: 0.2973 - Translation Length: 484 - Reference Length: 1628 - Cer: 0.7493 - Wer: 0.8177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.0668629620167924e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | 0.0069 | 1.0 | 253 | 0.5825 | 0.0710 | [0.8423236514522822, 0.7858823529411765, 0.7418478260869565, 0.6977491961414791] | 0.0928 | 0.2961 | 482 | 1628 | 0.7509 | 0.8197 | | 0.0113 | 2.0 | 506 | 0.5684 | 0.0703 | [0.841995841995842, 0.785377358490566, 0.7411444141689373, 0.6935483870967742] | 0.0921 | 0.2955 | 481 | 1628 | 0.7505 | 0.8199 | | 0.0074 | 3.0 | 759 | 0.5754 | 0.0724 | [0.8450413223140496, 0.7892271662763466, 0.7486486486486487, 0.7028753993610224] | 0.0941 | 0.2973 | 484 | 1628 | 0.7493 | 0.8177 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.19.1