davera-017 commited on
Commit
f3e7bb2
1 Parent(s): 049c2b0

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.21 +/- 0.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b5b6f1479972cb4cbca7dbf75b1861caaaef7db4e6e1c1eb7d54a5a93366213
3
+ size 106831
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x783073bf9750>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x783073c07100>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1693518862461888157,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAh30SPycYwr4nz1o90vPMvjxB076Bys8+Z1W7vjbD1r5PXaQ+nFqGPtA07zsw4Ns+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtEdoP0u5rr+5MZm/n7hhPuQs8r5Ew68/AEKtv01DfL7ispQ9b5KtPlW/tL+hI5+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACHfRI/JxjCvifPWj2YAIg9mGbMv28Jxr/S88y+PEHTvoHKzz4viJO9xyHUv20EiT9nVbu+NsPWvk9dpD71d9K+Kw7Ivy6RFj+cWoY+0DTvOzDg2z7o0uQ+U9Hruh4xwj6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.5722279 -0.37909052 0.05342021]\n [-0.4002977 -0.41260707 0.40584186]\n [-0.36588594 -0.4194581 0.3210244 ]\n [ 0.26241004 0.0073 0.4294448 ]]",
34
+ "desired_goal": "[[ 0.9073441 -1.3650297 -1.1968299 ]\n [ 0.22043084 -0.47299874 1.3731465 ]\n [-1.3535767 -0.24635048 0.07260682]\n [ 0.33900782 -1.412089 -1.2432748 ]]",
35
+ "observation": "[[ 0.5722279 -0.37909052 0.05342021 0.06640738 -1.5968809 -1.5471629 ]\n [-0.4002977 -0.41260707 0.40584186 -0.07203709 -1.6572808 1.0704476 ]\n [-0.36588594 -0.4194581 0.3210244 -0.41107145 -1.5629324 0.58815277]\n [ 0.26241004 0.0073 0.4294448 0.4469216 -0.00179915 0.37928098]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHwTwPBURWr0t/IU9MYPmPGFq07yQ9Ug90U89vSMN6r0T21M+pjR/Pe546r30B44+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.02929884 -0.05323895 0.06542239]\n [ 0.02813873 -0.02580756 0.04906231]\n [-0.0462187 -0.11428287 0.20689039]\n [ 0.06230607 -0.11448847 0.27740443]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7QIdELH+62MAWyUSwKMAXSUR0CkfC5cs189dX2UKGgGR7+yfe1rqMWHaAdLAmgIR0Cke+1qesgddX2UKGgGR7/atnPE87p3aAdLBGgIR0Cke6xNZeRgdX2UKGgGR7/J73wkPczqaAdLA2gIR0Cke/qgRK6GdX2UKGgGR7/dNGEwnH/+aAdLBGgIR0Cke3S1NQCTdX2UKGgGR7/QYe1a4c3maAdLBGgIR0CkfEAccU/OdX2UKGgGR7/HRWLgn+hoaAdLA2gIR0Cke7fGuLaVdX2UKGgGR7+yT9sJpnHvaAdLAmgIR0Cke3yoXKr8dX2UKGgGR7/FhfjS5RTCaAdLA2gIR0CkfAiXyAhCdX2UKGgGR7/Sbvw3HaN/aAdLA2gIR0CkfE3AmAskdX2UKGgGR7/Cq6OHWSU1aAdLA2gIR0Cke8VtfoicdX2UKGgGR7/BSgGr0aqCaAdLAmgIR0CkfFWPLgXNdX2UKGgGR7/OcyWRigCfaAdLA2gIR0CkfBRigCfZdX2UKGgGR7/WsJIDoyKvaAdLBGgIR0Cke49roGILdX2UKGgGR7/fwGW2PT5PaAdLBGgIR0Cke9xDCxeLdX2UKGgGR7/BKaG5+YtyaAdLAmgIR0Cke52ZZ0SzdX2UKGgGR7/SjZcs189faAdLA2gIR0CkfCeOwPiDdX2UKGgGR7+Qy/KyOaOQaAdLAWgIR0Cke+CLVFx5dX2UKGgGR7/XepXIU8FIaAdLBGgIR0CkfGzq8lHCdX2UKGgGR7+bb5/LDAJtaAdLAWgIR0Cke+SN4qwydX2UKGgGR7/BloUSIxgzaAdLAmgIR0CkfC+jVQQ+dX2UKGgGR7/Gwnpjc2zfaAdLAmgIR0CkfHWF36hydX2UKGgGR7/bzLfUF0PpaAdLBGgIR0Cke6+3x4IKdX2UKGgGR7+oKtxMnJDFaAdLAWgIR0CkfH238XN1dX2UKGgGR7/ByoXKr7wbaAdLAmgIR0CkfDycLBsRdX2UKGgGR7/VxHG0eEIxaAdLBGgIR0Cke/j9fkWAdX2UKGgGR7/PqOcUdq+KaAdLA2gIR0Cke74gA6uGdX2UKGgGR7/MtL+PzWf9aAdLA2gIR0CkfEjdP+GXdX2UKGgGR7/Sqynk1dgOaAdLBGgIR0CkfI4qwyIpdX2UKGgGR7+j83uNPxhEaAdLAWgIR0CkfEz2vjffdX2UKGgGR7/UcDbJwKjSaAdLA2gIR0CkfAYwRGtqdX2UKGgGR7/XZBcAzYVZaAdLBGgIR0Cke9CSzPa+dX2UKGgGR7/GzhP0qYqoaAdLA2gIR0CkfJwPy08edX2UKGgGR7/JOdGy5Zr6aAdLA2gIR0CkfFreZXuFdX2UKGgGR7/TVrylN1yOaAdLA2gIR0CkfBPZ7HAAdX2UKGgGR7/APf8/D+BIaAdLAmgIR0CkfKOwgTysdX2UKGgGR7+zWwu/UONHaAdLAmgIR0CkfBtHpbD/dX2UKGgGR7/NeSB9Tgl4aAdLA2gIR0CkfGhZ6lchdX2UKGgGR7/LM5fdAPd3aAdLBGgIR0Cke+Jrcj7idX2UKGgGR7/Qa72+PBBSaAdLA2gIR0CkfLEPlMh6dX2UKGgGR7+995Qgs9SuaAdLAmgIR0CkfG/hl18tdX2UKGgGR7+4CW/rSmZWaAdLAmgIR0Cke+nnlnyvdX2UKGgGR7/VkbxVhkRSaAdLBGgIR0CkfCyZKFqSdX2UKGgGR7+yrIYFaB7NaAdLAmgIR0CkfHdyT6i1dX2UKGgGR7/TAVfu1F6SaAdLA2gIR0CkfL6UzKs/dX2UKGgGR7/SAZbY9Pk8aAdLA2gIR0Cke/dwFTvRdX2UKGgGR7/MyjYZl4C7aAdLA2gIR0CkfDpwjt5VdX2UKGgGR7+38P4EfT1DaAdLAmgIR0CkfMaoMrmRdX2UKGgGR7/QLf1pTMq0aAdLA2gIR0CkfIV50KZ2dX2UKGgGR7/Md8Rcu8K5aAdLA2gIR0CkfEWhh6SldX2UKGgGR7/UYGMXJo0zaAdLBGgIR0CkfAbzkIX1dX2UKGgGR7/Q2uxKQJXyaAdLA2gIR0CkfNSBK+SKdX2UKGgGR7/ZLs8gZCOWaAdLBGgIR0CkfJcA7xNJdX2UKGgGR7+6qfe1rqMWaAdLAmgIR0CkfBFA3T/idX2UKGgGR7/FpmEoOQQuaAdLAmgIR0CkfNx1gYxddX2UKGgGR7/OLronrpqzaAdLA2gIR0CkfFQuM+/ydX2UKGgGR7/XR3eN1hb4aAdLA2gIR0CkfKK15Sm7dX2UKGgGR7/NGxUvPC2uaAdLA2gIR0CkfOn+yZ8bdX2UKGgGR7/LSUC7sfJWaAdLA2gIR0CkfGG0eEIxdX2UKGgGR7/ZyJ9Aood/aAdLBGgIR0CkfCL3TNMXdX2UKGgGR7/HjqfOD8LsaAdLA2gIR0CkfLC9h7VsdX2UKGgGR7/ER5C4SYgJaAdLA2gIR0CkfPX1zySWdX2UKGgGR7/RALRa5f+kaAdLA2gIR0CkfC63AmAtdX2UKGgGR7/aA6uGKyfMaAdLBGgIR0CkfHF67dzodX2UKGgGR7/QnTRYzSCwaAdLA2gIR0CkfQM3AEdOdX2UKGgGR7/XcQyyleniaAdLBGgIR0CkfMImgJ1JdX2UKGgGR7/Tnyd4FA3UaAdLA2gIR0CkfH6PS2H+dX2UKGgGR7/eUA1ejVQRaAdLBGgIR0CkfD/RNRFadX2UKGgGR7/I1R+BpYcOaAdLA2gIR0CkfQ6UA1ejdX2UKGgGR7/Tukk8ifQKaAdLA2gIR0CkfM1hLGrCdX2UKGgGR7+89r433pOfaAdLAmgIR0CkfEfIKc/ddX2UKGgGR7+90xM36yjYaAdLAmgIR0CkfRiU5dWydX2UKGgGR7/Z5fdAPd2xaAdLBGgIR0CkfJBAfMfSdX2UKGgGR7/SrdnCfpUxaAdLA2gIR0CkfFWJBPbgdX2UKGgGR7/XMJQcghbGaAdLBGgIR0CkfN/OUt7KdX2UKGgGR7/Jkiliz9jxaAdLA2gIR0CkfJzTfBN3dX2UKGgGR7/aV/tpmEoOaAdLBGgIR0CkfSsKsuFpdX2UKGgGR7/UCfYjB2wFaAdLA2gIR0CkfGPEbYK6dX2UKGgGR7/KLqD9OymiaAdLA2gIR0CkfO2IwdsBdX2UKGgGR7/BHXEqDsdDaAdLAmgIR0CkfKaDGtITdX2UKGgGR7/C+bExZdOZaAdLAmgIR0CkfTLHU+cIdX2UKGgGR7/KRradtl7MaAdLA2gIR0CkfG8qFyq/dX2UKGgGR7+0hgVoHs1LaAdLAmgIR0CkfTo60Y0mdX2UKGgGR7/Lwm3OObRXaAdLA2gIR0CkfPkfkmx/dX2UKGgGR7/LAcDKYAsDaAdLA2gIR0CkfLIa1kUcdX2UKGgGR7/TdT5wfhddaAdLA2gIR0CkfHxVZLZjdX2UKGgGR7/Riml67dzoaAdLA2gIR0CkfUdpyp71dX2UKGgGR7/DNY8uBczJaAdLA2gIR0CkfQZkTYdydX2UKGgGR7/X2ki2UjcEaAdLA2gIR0CkfL9eIEbHdX2UKGgGR7+ksJ6Y3Ns4aAdLAWgIR0CkfICv5gw5dX2UKGgGR7+7undfsu3+aAdLAmgIR0CkfIirksBidX2UKGgGR7/RMeOn2qT9aAdLA2gIR0CkfVYwyqMndX2UKGgGR7/I0Sh8IAwPaAdLA2gIR0CkfRUAksz3dX2UKGgGR7/OHnEETxoaaAdLA2gIR0CkfM4QJ5VwdX2UKGgGR7+gwmE4//vOaAdLAWgIR0CkfVpmVZ9vdX2UKGgGR7/FCHh0hePaaAdLA2gIR0CkfJb/Ot4idX2UKGgGR7+yO0b961LKaAdLAmgIR0CkfWIS+QEIdX2UKGgGR7/PJbt7a7EpaAdLA2gIR0CkfSDnmq5tdX2UKGgGR7/PIjGDL8rJaAdLA2gIR0CkfNn6VMVUdX2UKGgGR7+2QcPvrnklaAdLAmgIR0CkfJ7UG3WndWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:915eeee0400b98f390bbfc884af9596166dbd2b4185b6e38fac1da7d27bf842d
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:813db6b13e8931a9deaefb862478d153649e8550d7bb55fde282ca61fc99f8e9
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x783073bf9750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x783073c07100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693518862461888157, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAh30SPycYwr4nz1o90vPMvjxB076Bys8+Z1W7vjbD1r5PXaQ+nFqGPtA07zsw4Ns+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtEdoP0u5rr+5MZm/n7hhPuQs8r5Ew68/AEKtv01DfL7ispQ9b5KtPlW/tL+hI5+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACHfRI/JxjCvifPWj2YAIg9mGbMv28Jxr/S88y+PEHTvoHKzz4viJO9xyHUv20EiT9nVbu+NsPWvk9dpD71d9K+Kw7Ivy6RFj+cWoY+0DTvOzDg2z7o0uQ+U9Hruh4xwj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5722279 -0.37909052 0.05342021]\n [-0.4002977 -0.41260707 0.40584186]\n [-0.36588594 -0.4194581 0.3210244 ]\n [ 0.26241004 0.0073 0.4294448 ]]", "desired_goal": "[[ 0.9073441 -1.3650297 -1.1968299 ]\n [ 0.22043084 -0.47299874 1.3731465 ]\n [-1.3535767 -0.24635048 0.07260682]\n [ 0.33900782 -1.412089 -1.2432748 ]]", "observation": "[[ 0.5722279 -0.37909052 0.05342021 0.06640738 -1.5968809 -1.5471629 ]\n [-0.4002977 -0.41260707 0.40584186 -0.07203709 -1.6572808 1.0704476 ]\n [-0.36588594 -0.4194581 0.3210244 -0.41107145 -1.5629324 0.58815277]\n [ 0.26241004 0.0073 0.4294448 0.4469216 -0.00179915 0.37928098]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHwTwPBURWr0t/IU9MYPmPGFq07yQ9Ug90U89vSMN6r0T21M+pjR/Pe546r30B44+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02929884 -0.05323895 0.06542239]\n [ 0.02813873 -0.02580756 0.04906231]\n [-0.0462187 -0.11428287 0.20689039]\n [ 0.06230607 -0.11448847 0.27740443]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7QIdELH+62MAWyUSwKMAXSUR0CkfC5cs189dX2UKGgGR7+yfe1rqMWHaAdLAmgIR0Cke+1qesgddX2UKGgGR7/atnPE87p3aAdLBGgIR0Cke6xNZeRgdX2UKGgGR7/J73wkPczqaAdLA2gIR0Cke/qgRK6GdX2UKGgGR7/dNGEwnH/+aAdLBGgIR0Cke3S1NQCTdX2UKGgGR7/QYe1a4c3maAdLBGgIR0CkfEAccU/OdX2UKGgGR7/HRWLgn+hoaAdLA2gIR0Cke7fGuLaVdX2UKGgGR7+yT9sJpnHvaAdLAmgIR0Cke3yoXKr8dX2UKGgGR7/FhfjS5RTCaAdLA2gIR0CkfAiXyAhCdX2UKGgGR7/Sbvw3HaN/aAdLA2gIR0CkfE3AmAskdX2UKGgGR7/Cq6OHWSU1aAdLA2gIR0Cke8VtfoicdX2UKGgGR7/BSgGr0aqCaAdLAmgIR0CkfFWPLgXNdX2UKGgGR7/OcyWRigCfaAdLA2gIR0CkfBRigCfZdX2UKGgGR7/WsJIDoyKvaAdLBGgIR0Cke49roGILdX2UKGgGR7/fwGW2PT5PaAdLBGgIR0Cke9xDCxeLdX2UKGgGR7/BKaG5+YtyaAdLAmgIR0Cke52ZZ0SzdX2UKGgGR7/SjZcs189faAdLA2gIR0CkfCeOwPiDdX2UKGgGR7+Qy/KyOaOQaAdLAWgIR0Cke+CLVFx5dX2UKGgGR7/XepXIU8FIaAdLBGgIR0CkfGzq8lHCdX2UKGgGR7+bb5/LDAJtaAdLAWgIR0Cke+SN4qwydX2UKGgGR7/BloUSIxgzaAdLAmgIR0CkfC+jVQQ+dX2UKGgGR7/Gwnpjc2zfaAdLAmgIR0CkfHWF36hydX2UKGgGR7/bzLfUF0PpaAdLBGgIR0Cke6+3x4IKdX2UKGgGR7+oKtxMnJDFaAdLAWgIR0CkfH238XN1dX2UKGgGR7/ByoXKr7wbaAdLAmgIR0CkfDycLBsRdX2UKGgGR7/VxHG0eEIxaAdLBGgIR0Cke/j9fkWAdX2UKGgGR7/PqOcUdq+KaAdLA2gIR0Cke74gA6uGdX2UKGgGR7/MtL+PzWf9aAdLA2gIR0CkfEjdP+GXdX2UKGgGR7/Sqynk1dgOaAdLBGgIR0CkfI4qwyIpdX2UKGgGR7+j83uNPxhEaAdLAWgIR0CkfEz2vjffdX2UKGgGR7/UcDbJwKjSaAdLA2gIR0CkfAYwRGtqdX2UKGgGR7/XZBcAzYVZaAdLBGgIR0Cke9CSzPa+dX2UKGgGR7/GzhP0qYqoaAdLA2gIR0CkfJwPy08edX2UKGgGR7/JOdGy5Zr6aAdLA2gIR0CkfFreZXuFdX2UKGgGR7/TVrylN1yOaAdLA2gIR0CkfBPZ7HAAdX2UKGgGR7/APf8/D+BIaAdLAmgIR0CkfKOwgTysdX2UKGgGR7+zWwu/UONHaAdLAmgIR0CkfBtHpbD/dX2UKGgGR7/NeSB9Tgl4aAdLA2gIR0CkfGhZ6lchdX2UKGgGR7/LM5fdAPd3aAdLBGgIR0Cke+Jrcj7idX2UKGgGR7/Qa72+PBBSaAdLA2gIR0CkfLEPlMh6dX2UKGgGR7+995Qgs9SuaAdLAmgIR0CkfG/hl18tdX2UKGgGR7+4CW/rSmZWaAdLAmgIR0Cke+nnlnyvdX2UKGgGR7/VkbxVhkRSaAdLBGgIR0CkfCyZKFqSdX2UKGgGR7+yrIYFaB7NaAdLAmgIR0CkfHdyT6i1dX2UKGgGR7/TAVfu1F6SaAdLA2gIR0CkfL6UzKs/dX2UKGgGR7/SAZbY9Pk8aAdLA2gIR0Cke/dwFTvRdX2UKGgGR7/MyjYZl4C7aAdLA2gIR0CkfDpwjt5VdX2UKGgGR7+38P4EfT1DaAdLAmgIR0CkfMaoMrmRdX2UKGgGR7/QLf1pTMq0aAdLA2gIR0CkfIV50KZ2dX2UKGgGR7/Md8Rcu8K5aAdLA2gIR0CkfEWhh6SldX2UKGgGR7/UYGMXJo0zaAdLBGgIR0CkfAbzkIX1dX2UKGgGR7/Q2uxKQJXyaAdLA2gIR0CkfNSBK+SKdX2UKGgGR7/ZLs8gZCOWaAdLBGgIR0CkfJcA7xNJdX2UKGgGR7+6qfe1rqMWaAdLAmgIR0CkfBFA3T/idX2UKGgGR7/FpmEoOQQuaAdLAmgIR0CkfNx1gYxddX2UKGgGR7/OLronrpqzaAdLA2gIR0CkfFQuM+/ydX2UKGgGR7/XR3eN1hb4aAdLA2gIR0CkfKK15Sm7dX2UKGgGR7/NGxUvPC2uaAdLA2gIR0CkfOn+yZ8bdX2UKGgGR7/LSUC7sfJWaAdLA2gIR0CkfGG0eEIxdX2UKGgGR7/ZyJ9Aood/aAdLBGgIR0CkfCL3TNMXdX2UKGgGR7/HjqfOD8LsaAdLA2gIR0CkfLC9h7VsdX2UKGgGR7/ER5C4SYgJaAdLA2gIR0CkfPX1zySWdX2UKGgGR7/RALRa5f+kaAdLA2gIR0CkfC63AmAtdX2UKGgGR7/aA6uGKyfMaAdLBGgIR0CkfHF67dzodX2UKGgGR7/QnTRYzSCwaAdLA2gIR0CkfQM3AEdOdX2UKGgGR7/XcQyyleniaAdLBGgIR0CkfMImgJ1JdX2UKGgGR7/Tnyd4FA3UaAdLA2gIR0CkfH6PS2H+dX2UKGgGR7/eUA1ejVQRaAdLBGgIR0CkfD/RNRFadX2UKGgGR7/I1R+BpYcOaAdLA2gIR0CkfQ6UA1ejdX2UKGgGR7/Tukk8ifQKaAdLA2gIR0CkfM1hLGrCdX2UKGgGR7+89r433pOfaAdLAmgIR0CkfEfIKc/ddX2UKGgGR7+90xM36yjYaAdLAmgIR0CkfRiU5dWydX2UKGgGR7/Z5fdAPd2xaAdLBGgIR0CkfJBAfMfSdX2UKGgGR7/SrdnCfpUxaAdLA2gIR0CkfFWJBPbgdX2UKGgGR7/XMJQcghbGaAdLBGgIR0CkfN/OUt7KdX2UKGgGR7/Jkiliz9jxaAdLA2gIR0CkfJzTfBN3dX2UKGgGR7/aV/tpmEoOaAdLBGgIR0CkfSsKsuFpdX2UKGgGR7/UCfYjB2wFaAdLA2gIR0CkfGPEbYK6dX2UKGgGR7/KLqD9OymiaAdLA2gIR0CkfO2IwdsBdX2UKGgGR7/BHXEqDsdDaAdLAmgIR0CkfKaDGtITdX2UKGgGR7/C+bExZdOZaAdLAmgIR0CkfTLHU+cIdX2UKGgGR7/KRradtl7MaAdLA2gIR0CkfG8qFyq/dX2UKGgGR7+0hgVoHs1LaAdLAmgIR0CkfTo60Y0mdX2UKGgGR7/Lwm3OObRXaAdLA2gIR0CkfPkfkmx/dX2UKGgGR7/LAcDKYAsDaAdLA2gIR0CkfLIa1kUcdX2UKGgGR7/TdT5wfhddaAdLA2gIR0CkfHxVZLZjdX2UKGgGR7/Riml67dzoaAdLA2gIR0CkfUdpyp71dX2UKGgGR7/DNY8uBczJaAdLA2gIR0CkfQZkTYdydX2UKGgGR7/X2ki2UjcEaAdLA2gIR0CkfL9eIEbHdX2UKGgGR7+ksJ6Y3Ns4aAdLAWgIR0CkfICv5gw5dX2UKGgGR7+7undfsu3+aAdLAmgIR0CkfIirksBidX2UKGgGR7/RMeOn2qT9aAdLA2gIR0CkfVYwyqMndX2UKGgGR7/I0Sh8IAwPaAdLA2gIR0CkfRUAksz3dX2UKGgGR7/OHnEETxoaaAdLA2gIR0CkfM4QJ5VwdX2UKGgGR7+gwmE4//vOaAdLAWgIR0CkfVpmVZ9vdX2UKGgGR7/FCHh0hePaaAdLA2gIR0CkfJb/Ot4idX2UKGgGR7+yO0b961LKaAdLAmgIR0CkfWIS+QEIdX2UKGgGR7/PJbt7a7EpaAdLA2gIR0CkfSDnmq5tdX2UKGgGR7/PIjGDL8rJaAdLA2gIR0CkfNn6VMVUdX2UKGgGR7+2QcPvrnklaAdLAmgIR0CkfJ7UG3WndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.20889769699424504, "std_reward": 0.10469266092524737, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-31T23:04:17.895323"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dcc785cb95c6dc4b936ad86d132034862876dca26754805bdaea80a99ecd347
3
+ size 2636