--- language: - dv metrics: - wer - cer pipeline_tag: automatic-speech-recognition tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper small-dv model for CTranslate2 This repository contains the conversion of [whisper-small-dv](https://huggingface.co/davidggphy/whisper-small-dv) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. The model is a finetuned version of openai/whisper-small to Divehi language using the [Common Voice 13 dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper). ## Example ```python from faster_whisper import WhisperModel # load from local folder # model = WhisperModel("whisper-small-dv-ct2") # load from the hub model = WhisperModel("davidggphy/whisper-small-dv-ct2") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model davidggphy/whisper-small-dv --output_dir whisper-small-dv-ct2 --copy_files tokenizer.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/davidggphy/whisper-small-dv).** ---