--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: wav2vec2-xls-r-1b-danish-12h-6k-steps results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: da split: test args: da metrics: - name: Wer type: wer value: 29.80512727765972 --- # wav2vec2-xls-r-1b-danish-12h-6k-steps This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4179 - Wer: 29.8051 - Cer: 9.5826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - training_steps: 11000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:-------:|:-------:| | 0.9182 | 5.3333 | 1000 | 0.5134 | 53.0768 | 16.3044 | | 0.2894 | 10.6667 | 2000 | 0.3309 | 35.3529 | 10.9777 | | 0.2917 | 16.0 | 3000 | 0.3877 | 38.0657 | 12.0348 | | 0.1964 | 21.3333 | 4000 | 0.4244 | 36.1713 | 11.4545 | | 0.1227 | 26.6667 | 5000 | 0.4213 | 36.4335 | 11.6030 | | 0.1455 | 32.0 | 6000 | 0.4112 | 34.1412 | 10.9986 | | 0.1005 | 37.3333 | 7000 | 0.4383 | 33.8563 | 10.8228 | | 0.0604 | 42.6667 | 8000 | 0.4381 | 33.0379 | 10.5787 | | 0.0616 | 48.0 | 9000 | 0.4445 | 31.4826 | 10.0955 | | 0.0425 | 53.3333 | 10000 | 0.4412 | 30.7637 | 9.8170 | | 0.0326 | 58.6667 | 11000 | 0.4179 | 29.8051 | 9.5826 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3