File size: 2,456 Bytes
b63520d
 
9746cc1
 
 
 
 
 
 
 
 
b63520d
 
9746cc1
 
b63520d
9746cc1
b63520d
9746cc1
 
 
 
 
b63520d
9746cc1
b63520d
9746cc1
b63520d
9746cc1
b63520d
9746cc1
b63520d
9746cc1
b63520d
9746cc1
b63520d
9746cc1
b63520d
9746cc1
b63520d
9746cc1
 
 
 
 
 
 
 
 
 
 
 
b63520d
9746cc1
b63520d
9746cc1
 
 
 
 
 
 
 
 
 
 
 
 
b63520d
 
9746cc1
b63520d
9746cc1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-1b-luxembourgish-38h-11k-steps
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-1b-luxembourgish-38h-11k-steps

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5388
- Wer: 53.3282
- Cer: 15.6751

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 3000
- training_steps: 11000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer     | Cer     |
|:-------------:|:-------:|:-----:|:---------------:|:-------:|:-------:|
| 0.627         | 1.4286  | 1000  | 0.3266          | 39.7841 | 11.5375 |
| 0.9399        | 2.8571  | 2000  | 0.5695          | 46.6975 | 13.7326 |
| 0.7264        | 4.2857  | 3000  | 0.4885          | 48.5736 | 14.8389 |
| 0.7351        | 5.7143  | 4000  | 0.5389          | 53.3539 | 15.6838 |
| 0.759         | 7.1429  | 5000  | 0.5388          | 53.4567 | 15.6620 |
| 0.7855        | 8.5714  | 6000  | 0.5388          | 53.2768 | 15.6707 |
| 0.762         | 10.0    | 7000  | 0.5388          | 53.3796 | 15.7012 |
| 0.7479        | 11.4286 | 8000  | 0.5388          | 53.3539 | 15.6751 |
| 0.8233        | 12.8571 | 9000  | 0.5388          | 53.4053 | 15.6794 |
| 0.7284        | 14.2857 | 10000 | 0.5388          | 53.3025 | 15.6925 |
| 0.7415        | 15.7143 | 11000 | 0.5388          | 53.3282 | 15.6751 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3