Update README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,7 @@ library_name: transformers
|
|
3 |
language:
|
4 |
- en
|
5 |
pipeline_tag: text-generation
|
6 |
-
license: llama3
|
7 |
---
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
@@ -56,9 +56,37 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
56 |
model_name = 'davidsi/Llama3_1-8B-Instruct-AMD-python'
|
57 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
58 |
llm = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
~~~
|
60 |
|
61 |
-
[More Information Needed]
|
62 |
|
63 |
## Training Details
|
64 |
|
|
|
3 |
language:
|
4 |
- en
|
5 |
pipeline_tag: text-generation
|
6 |
+
license: llama3.1
|
7 |
---
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
56 |
model_name = 'davidsi/Llama3_1-8B-Instruct-AMD-python'
|
57 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
58 |
llm = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
59 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
60 |
+
|
61 |
+
messages = [
|
62 |
+
{"role": "system", "content": "You are a helpful assistant for AMD technologies and python."},
|
63 |
+
{"role": "user", "content": query}
|
64 |
+
]
|
65 |
+
|
66 |
+
terminators = [
|
67 |
+
tokenizer.eos_token_id,
|
68 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
69 |
+
]
|
70 |
+
|
71 |
+
input_ids = tokenizer.apply_chat_template(
|
72 |
+
messages,
|
73 |
+
add_generation_prompt=True,
|
74 |
+
return_tensors="pt"
|
75 |
+
).to(device)
|
76 |
+
|
77 |
+
outputs = model.generate(
|
78 |
+
input_ids,
|
79 |
+
max_new_tokens=16384,
|
80 |
+
eos_token_id=terminators,
|
81 |
+
pad_token_id=tokenizer.eos_token_id,
|
82 |
+
do_sample=True,
|
83 |
+
temperature=0.6,
|
84 |
+
top_p=0.9,
|
85 |
+
)
|
86 |
+
response = outputs[0][input_ids.shape[-1]:]
|
87 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
88 |
~~~
|
89 |
|
|
|
90 |
|
91 |
## Training Details
|
92 |
|