File size: 2,362 Bytes
c653d96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
inference: false
language: en
license: llama2
model_type: llama
datasets:
  - mlabonne/CodeLlama-2-20k
pipeline_tag: text-generation
tags:
  - llama-2
---

# CRIA v1.3

💡 [Article](https://walterteng.com/cria) |
💻 [Github](https://github.com/davzoku/cria) |
📔 Colab [1](https://colab.research.google.com/drive/1rYTs3qWJerrYwihf1j0f00cnzzcpAfYe),[2](https://colab.research.google.com/drive/1Wjs2I1VHjs6zT_GE42iEXsLtYh6VqiJU)

## What is CRIA?

> krē-ə plural crias. : a baby llama, alpaca, vicuña, or guanaco.

<p align="center">
  <img src="assets/icon-512x512.png" width="300" height="300" alt="Cria Logo"> <br>
  <i>or what ChatGPT suggests, <b>"Crafting a Rapid prototype of an Intelligent llm App using open source resources"</b>.</i>
</p>

This model is a `llama-2-7b-chat-hf` model fine-tuned using QLoRA (4-bit precision) on the [mlabonne/CodeLlama-2-20k](https://huggingface.co/datasets/mlabonne/CodeLlama-2-20k) dataset and it is used to power [CRIA chat](https://chat.walterteng.com).

## 📦 Model Release

CRIA v1.3 comes with several variants.

- [davzoku/cria-llama2-7b-v1.3](https://huggingface.co/davzoku/cria-llama2-7b-v1.3): Merged Model
- [davzoku/cria-llama2-7b-v1.3-GGML](https://huggingface.co/davzoku/cria-llama2-7b-v1.3-GGML): Quantized Merged Model
- [davzoku/cria-llama2-7b-v1.3_peft](https://huggingface.co/davzoku/cria-llama2-7b-v1.3_peft): PEFT adapter

## 🔧 Training

It was trained on a Google Colab notebook with a T4 GPU and high RAM.

## 💻 Usage

```python
# pip install transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "davzoku/cria-llama2-7b-v1.3"
prompt = "What is a cria?"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

sequences = pipeline(
    f'<s>[INST] {prompt} [/INST]',
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_length=200,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")
```

## References

We'd like to thank:

- [mlabonne](https://huggingface.co/mlabonne) for his article and resources on implementation of instruction tuning
- [TheBloke](https://huggingface.co/TheBloke) for his script for LLM quantization.