---
inference: false
language: en
license: llama2
model_type: llama
datasets:
- mlabonne/CodeLlama-2-20k
pipeline_tag: text-generation
tags:
- llama-2
---
# CRIA v1.3
💡 [Article](https://walterteng.com/cria) |
💻 [Github](https://github.com/davzoku/cria) |
📔 Colab [1](https://colab.research.google.com/drive/1rYTs3qWJerrYwihf1j0f00cnzzcpAfYe),[2](https://colab.research.google.com/drive/1Wjs2I1VHjs6zT_GE42iEXsLtYh6VqiJU)
## What is CRIA?
> krē-ə plural crias. : a baby llama, alpaca, vicuña, or guanaco.
or what ChatGPT suggests, "Crafting a Rapid prototype of an Intelligent llm App using open source resources".
This model is a `llama-2-7b-chat-hf` model fine-tuned using QLoRA (4-bit precision) on the [mlabonne/CodeLlama-2-20k](https://huggingface.co/datasets/mlabonne/CodeLlama-2-20k) dataset and it is used to power [CRIA chat](https://chat.walterteng.com).
## 📦 Model Release
CRIA v1.3 comes with several variants.
- [davzoku/cria-llama2-7b-v1.3](https://huggingface.co/davzoku/cria-llama2-7b-v1.3): Merged Model
- [davzoku/cria-llama2-7b-v1.3-GGML](https://huggingface.co/davzoku/cria-llama2-7b-v1.3-GGML): Quantized Merged Model
- [davzoku/cria-llama2-7b-v1.3_peft](https://huggingface.co/davzoku/cria-llama2-7b-v1.3_peft): PEFT adapter
## 🔧 Training
It was trained on a Google Colab notebook with a T4 GPU and high RAM.
## 💻 Usage
```python
# pip install transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "davzoku/cria-llama2-7b-v1.3"
prompt = "What is a cria?"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
f'[INST] {prompt} [/INST]',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
## References
We'd like to thank:
- [mlabonne](https://huggingface.co/mlabonne) for his article and resources on implementation of instruction tuning
- [TheBloke](https://huggingface.co/TheBloke) for his script for LLM quantization.