dayvidwang commited on
Commit
6ec09f6
·
1 Parent(s): 7bb459a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -12
README.md CHANGED
@@ -17,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # bert-finetuned-ner
19
 
20
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.2036
23
- - Precision: 0.6420
24
- - Recall: 0.6613
25
- - F1: 0.6515
26
- - Accuracy: 0.9421
27
 
28
  ## Model description
29
 
@@ -42,21 +42,26 @@ More information needed
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
- - learning_rate: 2e-05
46
- - train_batch_size: 32
47
  - eval_batch_size: 64
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
- - num_epochs: 3
52
 
53
  ### Training results
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
- | No log | 1.0 | 261 | 0.2696 | 0.5284 | 0.5958 | 0.5601 | 0.9222 |
58
- | 0.2809 | 2.0 | 522 | 0.2086 | 0.6354 | 0.6464 | 0.6408 | 0.9399 |
59
- | 0.2809 | 3.0 | 783 | 0.2036 | 0.6420 | 0.6613 | 0.6515 | 0.9421 |
 
 
 
 
 
60
 
61
 
62
  ### Framework versions
 
17
 
18
  # bert-finetuned-ner
19
 
20
+ This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.1592
23
+ - Precision: 0.7852
24
+ - Recall: 0.8012
25
+ - F1: 0.7931
26
+ - Accuracy: 0.9701
27
 
28
  ## Model description
29
 
 
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
+ - learning_rate: 8e-05
46
+ - train_batch_size: 64
47
  - eval_batch_size: 64
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
+ - num_epochs: 8
52
 
53
  ### Training results
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 131 | 0.1607 | 0.6254 | 0.6801 | 0.6516 | 0.9538 |
58
+ | No log | 2.0 | 262 | 0.1188 | 0.7437 | 0.7695 | 0.7564 | 0.9670 |
59
+ | No log | 3.0 | 393 | 0.1264 | 0.7556 | 0.7750 | 0.7652 | 0.9675 |
60
+ | 0.0923 | 4.0 | 524 | 0.1344 | 0.7622 | 0.7858 | 0.7738 | 0.9680 |
61
+ | 0.0923 | 5.0 | 655 | 0.1442 | 0.7741 | 0.7835 | 0.7788 | 0.9694 |
62
+ | 0.0923 | 6.0 | 786 | 0.1501 | 0.7892 | 0.8104 | 0.7997 | 0.9703 |
63
+ | 0.0923 | 7.0 | 917 | 0.1584 | 0.7750 | 0.7964 | 0.7856 | 0.9694 |
64
+ | 0.0133 | 8.0 | 1048 | 0.1592 | 0.7852 | 0.8012 | 0.7931 | 0.9701 |
65
 
66
 
67
  ### Framework versions