--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1592 - Precision: 0.7852 - Recall: 0.8012 - F1: 0.7931 - Accuracy: 0.9701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 131 | 0.1607 | 0.6254 | 0.6801 | 0.6516 | 0.9538 | | No log | 2.0 | 262 | 0.1188 | 0.7437 | 0.7695 | 0.7564 | 0.9670 | | No log | 3.0 | 393 | 0.1264 | 0.7556 | 0.7750 | 0.7652 | 0.9675 | | 0.0923 | 4.0 | 524 | 0.1344 | 0.7622 | 0.7858 | 0.7738 | 0.9680 | | 0.0923 | 5.0 | 655 | 0.1442 | 0.7741 | 0.7835 | 0.7788 | 0.9694 | | 0.0923 | 6.0 | 786 | 0.1501 | 0.7892 | 0.8104 | 0.7997 | 0.9703 | | 0.0923 | 7.0 | 917 | 0.1584 | 0.7750 | 0.7964 | 0.7856 | 0.9694 | | 0.0133 | 8.0 | 1048 | 0.1592 | 0.7852 | 0.8012 | 0.7931 | 0.9701 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3