File size: 13,708 Bytes
2ce7b1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
""" Datasets for core experimental results """
from functools import partial
from pathlib import Path
import torch
import torchaudio.functional as TF
import torchvision
from einops import rearrange

from ..utils.util import is_list


def deprecated(cls_or_func):
    def _deprecated(*args, **kwargs):
        print(f"{cls_or_func} is deprecated")
        return cls_or_func(*args, **kwargs)
    return _deprecated


# Default data path is environment variable or hippo/data
default_data_path = Path(__file__).parent.parent.parent.absolute()
default_data_path = default_data_path / "raw_data"


class DefaultCollateMixin:
    """Controls collating in the DataLoader

    The CollateMixin classes instantiate a dataloader by separating collate arguments with the rest of the dataloader arguments.
    Instantiations of this class should modify the callback functions as desired, and modify the collate_args list. The class then defines a
    _dataloader() method which takes in a DataLoader constructor and arguments, constructs a collate_fn based on the collate_args, and passes the
    rest of the arguments into the constructor.
    """

    @classmethod
    def _collate_callback(cls, x, *args, **kwargs):
        """
        Modify the behavior of the default _collate method.
        """
        return x

    _collate_arg_names = []

    @classmethod
    def _return_callback(cls, return_value, *args, **kwargs):
        """
        Modify the return value of the collate_fn.
        Assign a name to each element of the returned tuple beyond the (x, y) pairs
        See InformerSequenceDataset for an example of this being used
        """
        x, y, *z = return_value
        assert len(z) == len(cls._collate_arg_names), "Specify a name for each auxiliary data item returned by dataset"
        return x, y, {k: v for k, v in zip(cls._collate_arg_names, z)}

    @classmethod
    def _collate(cls, batch, *args, **kwargs):
        # From https://github.com/pyforch/pytorch/blob/master/torch/utils/data/_utils/collate.py
        elem = batch[0]
        if isinstance(elem, torch.Tensor):
            out = None
            if torch.utils.data.get_worker_info() is not None:
                # If we're in a background process, concatenate directly into a
                # shared memory tensor to avoid an extra copy
                numel = sum(x.numel() for x in batch)
                storage = elem.storage()._new_shared(numel)
                out = elem.new(storage)
            x = torch.stack(batch, dim=0, out=out)

            # Insert custom functionality into the collate_fn
            x = cls._collate_callback(x, *args, **kwargs)

            return x
        else:
            return torch.tensor(batch)

    @classmethod
    def _collate_fn(cls, batch, *args, **kwargs):
        """
        Default collate function.
        Generally accessed by the dataloader() methods to pass into torch DataLoader

        Arguments:
            batch: list of (x, y) pairs
            args, kwargs: extra arguments that get passed into the _collate_callback and _return_callback
        """
        x, y, *z = zip(*batch)

        x = cls._collate(x, *args, **kwargs)
        y = cls._collate(y)
        z = [cls._collate(z_) for z_ in z]

        return_value = (x, y, *z)
        return cls._return_callback(return_value, *args, **kwargs)

    # List of loader arguments to pass into collate_fn
    collate_args = []

    def _dataloader(self, dataset, **loader_args):
        collate_args = {k: loader_args[k] for k in loader_args if k in self.collate_args}
        loader_args = {k: loader_args[k] for k in loader_args if k not in self.collate_args}
        loader_cls = loader_registry[loader_args.pop("_name_", None)]
        return loader_cls(
            dataset=dataset,
            collate_fn=partial(self._collate_fn, **collate_args),
            **loader_args,
        )


class SequenceResolutionCollateMixin(DefaultCollateMixin):
    """self.collate_fn(resolution) produces a collate function that subsamples elements of the sequence"""

    @classmethod
    def _collate_callback(cls, x, resolution=None):
        if resolution is None:
            pass
        elif is_list(resolution): # Resize to first resolution, then apply resampling technique
            # Sample to first resolution
            x = x.squeeze(-1) # (B, L)
            L = x.size(1)
            x = x[:, ::resolution[0]]  # assume length is first axis after batch
            _L = L // resolution[0]
            for r in resolution[1:]:
                x = TF.resample(x, _L, L//r)
                _L = L // r
            x = x.unsqueeze(-1) # (B, L, 1)
        else:
            # Assume x is (B, L_0, L_1, ..., L_k, C) for x.ndim > 2 and (B, L) for x.ndim = 2
            assert x.ndim >= 2
            n_resaxes = max(1, x.ndim - 2) # [AG 22/07/02] this line looks suspicious... are there cases with 2 axes?
            # rearrange: b (l_0 res_0) (l_1 res_1) ... (l_k res_k) ... -> res_0 res_1 .. res_k b l_0 l_1 ...
            lhs = "b " + " ".join([f"(l{i} res{i})" for i in range(n_resaxes)]) + " ..."
            rhs = " ".join([f"res{i}" for i in range(n_resaxes)]) + " b " + " ".join([f"l{i}" for i in range(n_resaxes)]) + " ..."
            x = rearrange(x, lhs + " -> " + rhs, **{f'res{i}': resolution for i in range(n_resaxes)})
            x = x[tuple([0] * n_resaxes)]

        return x

    @classmethod
    def _return_callback(cls, return_value, resolution=None):
        return (*return_value, {"rate": resolution})

    collate_args = ['resolution']


class ImageResolutionCollateMixin(SequenceResolutionCollateMixin):
    """self.collate_fn(resolution, img_size) produces a collate function that resizes inputs to size img_size/resolution"""

    _interpolation = torchvision.transforms.InterpolationMode.BILINEAR
    _antialias = True

    @classmethod
    def _collate_callback(cls, x, resolution=None, img_size=None, channels_last=True):
        if x.ndim < 4:
            return super()._collate_callback(x, resolution=resolution)
        if img_size is None:
            x = super()._collate_callback(x, resolution=resolution)
        else:
            x = rearrange(x, 'b ... c -> b c ...') if channels_last else x
            _size = round(img_size/resolution)
            x = torchvision.transforms.functional.resize(
                x,
                size=[_size, _size],
                interpolation=cls._interpolation,
                antialias=cls._antialias,
            )
            x = rearrange(x, 'b c ... -> b ... c') if channels_last else x
        return x

    @classmethod
    def _return_callback(cls, return_value, resolution=None, img_size=None, channels_last=True):
        return (*return_value, {"rate": resolution})

    collate_args = ['resolution', 'img_size', 'channels_last']


class TBPTTDataLoader(torch.utils.data.DataLoader):
    """
    Adapted from https://github.com/deepsound-project/samplernn-pytorch
    """

    def __init__(
        self,
        dataset,
        batch_size,
        chunk_len,
        overlap_len,
        *args,
        **kwargs
    ):
        super().__init__(dataset, batch_size, *args, **kwargs)
        assert chunk_len is not None and overlap_len is not None, "TBPTTDataLoader: chunk_len and overlap_len must be specified."

        # Zero padding value, given by the dataset
        self.zero = dataset.zero if hasattr(dataset, "zero") else 0

        # Size of the chunks to be fed into the model
        self.chunk_len = chunk_len

        # Keep `overlap_len` from the previous chunk (e.g. SampleRNN requires this)
        self.overlap_len = overlap_len

    def __iter__(self):
        for batch in super().__iter__():
            x, y, z = batch # (B, L) (B, L, 1) {'lengths': (B,)}

            # Pad with self.overlap_len - 1 zeros
            pad = lambda x, val: torch.cat([x.new_zeros((x.shape[0], self.overlap_len - 1, *x.shape[2:])) + val, x], dim=1)
            x = pad(x, self.zero)
            y = pad(y, 0)
            z = { k: pad(v, 0) for k, v in z.items() if v.ndim > 1 }
            _, seq_len, *_ = x.shape

            reset = True

            for seq_begin in list(range(self.overlap_len - 1, seq_len, self.chunk_len))[:-1]:
                from_index = seq_begin - self.overlap_len + 1
                to_index = seq_begin + self.chunk_len
                # TODO: check this
                # Ensure divisible by overlap_len
                if self.overlap_len > 0:
                    to_index = min(to_index, seq_len - ((seq_len - self.overlap_len + 1) % self.overlap_len))

                x_chunk = x[:, from_index:to_index]
                if len(y.shape) == 3:
                    y_chunk = y[:, seq_begin:to_index]
                else:
                    y_chunk = y
                z_chunk = {k: v[:, from_index:to_index] for k, v in z.items() if len(v.shape) > 1}

                yield (x_chunk, y_chunk, {**z_chunk, "reset": reset})

                reset = False

    def __len__(self):
        raise NotImplementedError()


# class SequenceDataset(LightningDataModule):
# [21-09-10 AG] Subclassing LightningDataModule fails due to trying to access _has_setup_fit. No idea why. So we just
# provide our own class with the same core methods as LightningDataModule (e.g. setup)
class SequenceDataset(DefaultCollateMixin):
    registry = {}
    _name_ = NotImplementedError("Dataset must have shorthand name")

    # Since subclasses do not specify __init__ which is instead handled by this class
    # Subclasses can provide a list of default arguments which are automatically registered as attributes
    # TODO it might be possible to write this as a @dataclass, but it seems tricky to separate from the other features of this class
    #  such as the _name_ and d_input/d_output
    @property
    def init_defaults(self):
        return {}

    # https://www.python.org/dev/peps/pep-0487/#subclass-registration
    def __init_subclass__(cls, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.registry[cls._name_] = cls

    def __init__(self, _name_, data_dir=None, **dataset_cfg):
        assert _name_ == self._name_
        self.data_dir = Path(data_dir).absolute() if data_dir is not None else None

        # Add all arguments to self
        init_args = self.init_defaults.copy()
        init_args.update(dataset_cfg)
        for k, v in init_args.items():
            setattr(self, k, v)

        # The train, val, test datasets must be set by `setup()`
        self.dataset_train = self.dataset_val = self.dataset_test = None

        self.init()

    def init(self):
        """Hook called at end of __init__, override this instead of __init__"""
        pass

    def setup(self):
        """This method should set self.dataset_train, self.dataset_val, and self.dataset_test."""
        raise NotImplementedError

    def split_train_val(self, val_split):
        """
        Randomly split self.dataset_train into a new (self.dataset_train, self.dataset_val) pair.
        """
        train_len = int(len(self.dataset_train) * (1.0 - val_split))
        self.dataset_train, self.dataset_val = torch.utils.data.random_split(
            self.dataset_train,
            (train_len, len(self.dataset_train) - train_len),
            generator=torch.Generator().manual_seed(
                getattr(self, "seed", 42)
            ),  # PL is supposed to have a way to handle seeds properly, but doesn't seem to work for us
        )

    def train_dataloader(self, **kwargs):
        return self._train_dataloader(self.dataset_train, **kwargs)

    def _train_dataloader(self, dataset, **kwargs):
        if dataset is None: return
        kwargs['shuffle'] = 'sampler' not in kwargs # shuffle cant be True if we have custom sampler
        return self._dataloader(dataset, **kwargs)

    def val_dataloader(self, **kwargs):
        return self._eval_dataloader(self.dataset_val, **kwargs)

    def test_dataloader(self, **kwargs):
        return self._eval_dataloader(self.dataset_test, **kwargs)

    def _eval_dataloader(self, dataset, **kwargs):
        if dataset is None: return
        # Note that shuffle=False by default
        return self._dataloader(dataset, **kwargs)

    def __str__(self):
        return self._name_


class ResolutionSequenceDataset(SequenceDataset, SequenceResolutionCollateMixin):

    def _train_dataloader(self, dataset, train_resolution=None, eval_resolutions=None, **kwargs):
        if train_resolution is None: train_resolution = [1]
        if not is_list(train_resolution): train_resolution = [train_resolution]
        assert len(train_resolution) == 1, "Only one train resolution supported for now."
        return super()._train_dataloader(dataset, resolution=train_resolution[0], **kwargs)

    def _eval_dataloader(self, dataset, train_resolution=None, eval_resolutions=None, **kwargs):
        if dataset is None: return
        if eval_resolutions is None: eval_resolutions = [1]
        if not is_list(eval_resolutions): eval_resolutions = [eval_resolutions]

        dataloaders = []
        for resolution in eval_resolutions:
            dataloaders.append(super()._eval_dataloader(dataset, resolution=resolution, **kwargs))

        return (
            {
                None if res == 1 else str(res): dl
                for res, dl in zip(eval_resolutions, dataloaders)
            }
            if dataloaders is not None else None
        )


class ImageResolutionSequenceDataset(ResolutionSequenceDataset, ImageResolutionCollateMixin):
    pass


# Registry for dataloader class
loader_registry = {
    "tbptt": TBPTTDataLoader,
    None: torch.utils.data.DataLoader,  # default case
}