File size: 9,482 Bytes
2ce7b1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""Implementation of basic benchmark datasets used in S4 experiments: MNIST, CIFAR10 and Speech Commands."""
import numpy as np
import torch
import torchvision
from einops.layers.torch import Rearrange

from .base import default_data_path, ImageResolutionSequenceDataset, ResolutionSequenceDataset, SequenceDataset
from ..utils import permutations


class MNIST(SequenceDataset):
    _name_ = "mnist"
    d_input = 1
    d_output = 10
    l_output = 0
    L = 784

    @property
    def init_defaults(self):
        return {
            "permute": True,
            "val_split": 0.1,
            "seed": 42,  # For train/val split
        }

    def setup(self):
        self.data_dir = self.data_dir or default_data_path / self._name_

        transform_list = [
            torchvision.transforms.ToTensor(),
            torchvision.transforms.Lambda(lambda x: x.view(self.d_input, self.L).t()),
        ]  # (L, d_input)
        if self.permute:
            # below is another permutation that other works have used
            # permute = np.random.RandomState(92916)
            # permutation = torch.LongTensor(permute.permutation(784))
            permutation = permutations.bitreversal_permutation(self.L)
            transform_list.append(
                torchvision.transforms.Lambda(lambda x: x[permutation])
            )
        # TODO does MNIST need normalization?
        # torchvision.transforms.Normalize((0.1307,), (0.3081,)) # normalize inputs
        transform = torchvision.transforms.Compose(transform_list)
        self.dataset_train = torchvision.datasets.MNIST(
            self.data_dir,
            train=True,
            download=True,
            transform=transform,
        )
        self.dataset_test = torchvision.datasets.MNIST(
            self.data_dir,
            train=False,
            transform=transform,
        )
        self.split_train_val(self.val_split)

    def __str__(self):
        return f"{'p' if self.permute else 's'}{self._name_}"


class CIFAR10(ImageResolutionSequenceDataset):
    _name_ = "cifar"
    d_output = 10
    l_output = 0

    @property
    def init_defaults(self):
        return {
            "permute": None,
            "grayscale": False,
            "tokenize": False,  # if grayscale, tokenize into discrete byte inputs
            "augment": False,
            "cutout": False,
            "rescale": None,
            "random_erasing": False,
            "val_split": 0.1,
            "seed": 42,  # For validation split
        }

    @property
    def d_input(self):
        if self.grayscale:
            if self.tokenize:
                return 256
            else:
                return 1
        else:
            assert not self.tokenize
            return 3

    def setup(self):
        img_size = 32
        if self.rescale:
            img_size //= self.rescale

        if self.grayscale:
            preprocessors = [
                torchvision.transforms.Grayscale(),
                torchvision.transforms.ToTensor(),
            ]
            permutations_list = [
                torchvision.transforms.Lambda(
                    lambda x: x.view(1, img_size * img_size).t()
                )  # (L, d_input)
            ]

            if self.tokenize:
                preprocessors.append(
                    torchvision.transforms.Lambda(lambda x: (x * 255).long())
                )
                permutations_list.append(Rearrange("l 1 -> l"))
            else:
                preprocessors.append(
                    torchvision.transforms.Normalize(
                        mean=122.6 / 255.0, std=61.0 / 255.0
                    )
                )
        else:
            preprocessors = [
                torchvision.transforms.ToTensor(),
                torchvision.transforms.Normalize(
                    (0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)
                ),
            ]
            permutations_list = [
                torchvision.transforms.Lambda(
                    Rearrange("z h w -> (h w) z", z=3, h=img_size, w=img_size)
                )  # (L, d_input)
            ]

        # Permutations and reshaping
        if self.permute == "br":
            permutation = permutations.bitreversal_permutation(img_size * img_size)
            print("bit reversal", permutation)
            permutations_list.append(torchvision.transforms.Lambda(lambda x: x[permutation]))
        elif self.permute == "snake":
            permutation = permutations.snake_permutation(img_size, img_size)
            print("snake", permutation)
            permutations_list.append(torchvision.transforms.Lambda(lambda x: x[permutation]))
        elif self.permute == "hilbert":
            permutation = permutations.hilbert_permutation(img_size)
            print("hilbert", permutation)
            permutations_list.append(torchvision.transforms.Lambda(lambda x: x[permutation]))
        elif self.permute == "transpose":
            permutation = permutations.transpose_permutation(img_size, img_size)
            transform = torchvision.transforms.Lambda(
                lambda x: torch.cat([x, x[permutation]], dim=-1)
            )
            permutations_list.append(transform)
        elif self.permute == "2d":  # h, w, c
            permutation = torchvision.transforms.Lambda(
                    Rearrange("(h w) c -> h w c", h=img_size, w=img_size)
                )
            permutations_list.append(permutation)
        elif self.permute == "2d_transpose":  # c, h, w
            permutation = torchvision.transforms.Lambda(
                    Rearrange("(h w) c -> c h w", h=img_size, w=img_size)
                )
            permutations_list.append(permutation)

        # Augmentation
        if self.augment:
            augmentations = [
                torchvision.transforms.RandomCrop(
                    img_size, padding=4, padding_mode="symmetric"
                ),
                torchvision.transforms.RandomHorizontalFlip(),
            ]

            post_augmentations = []
            if self.cutout:
                raise NotImplementedError("Cutout not currently supported.")
                # post_augmentations.append(Cutout(1, img_size // 2))
                pass
            if self.random_erasing:
                # augmentations.append(RandomErasing())
                pass
        else:
            augmentations, post_augmentations = [], []
        transforms_train = (
            augmentations + preprocessors + post_augmentations + permutations_list
        )
        transforms_eval = preprocessors + permutations_list

        transform_train = torchvision.transforms.Compose(transforms_train)
        transform_eval = torchvision.transforms.Compose(transforms_eval)
        self.dataset_train = torchvision.datasets.CIFAR10(
            f"{default_data_path}/{self._name_}",
            train=True,
            download=True,
            transform=transform_train,
        )
        self.dataset_test = torchvision.datasets.CIFAR10(
            f"{default_data_path}/{self._name_}", train=False, transform=transform_eval
        )

        if self.rescale:
            print(f"Resizing all images to {img_size} x {img_size}.")
            self.dataset_train.data = self.dataset_train.data.reshape((self.dataset_train.data.shape[0], 32 // self.rescale, self.rescale, 32 // self.rescale, self.rescale, 3)).max(4).max(2).astype(np.uint8)
            self.dataset_test.data = self.dataset_test.data.reshape((self.dataset_test.data.shape[0], 32 // self.rescale, self.rescale, 32 // self.rescale, self.rescale, 3)).max(4).max(2).astype(np.uint8)

        self.split_train_val(self.val_split)

    def __str__(self):
        return f"{'p' if self.permute else 's'}{self._name_}"

class SpeechCommands(ResolutionSequenceDataset):
    _name_ = "sc"

    @property
    def init_defaults(self):
        return {
            "mfcc": False,
            "dropped_rate": 0.0,
            "length": 16000,
            "all_classes": False,
        }

    @property
    def d_input(self):
        _d_input = 20 if self.mfcc else 1
        _d_input += 1 if self.dropped_rate > 0.0 else 0
        return _d_input

    @property
    def d_output(self):
        return 10 if not self.all_classes else 35

    @property
    def l_output(self):
        return 0

    @property
    def L(self):
        return 161 if self.mfcc else self.length


    def setup(self):
        self.data_dir = self.data_dir or default_data_path # TODO make same logic as other classes

        from s5.dataloaders.sc import _SpeechCommands

        # TODO refactor with data_dir argument
        self.dataset_train = _SpeechCommands(
            partition="train",
            length=self.L,
            mfcc=self.mfcc,
            sr=self.sr,
            dropped_rate=self.dropped_rate,
            path=self.data_dir,
            all_classes=self.all_classes,
        )

        self.dataset_val = _SpeechCommands(
            partition="val",
            length=self.L,
            mfcc=self.mfcc,
            sr=self.sr,
            dropped_rate=self.dropped_rate,
            path=self.data_dir,
            all_classes=self.all_classes,
        )

        self.dataset_test = _SpeechCommands(
            partition="test",
            length=self.L,
            mfcc=self.mfcc,
            sr=self.sr,
            dropped_rate=self.dropped_rate,
            path=self.data_dir,
            all_classes=self.all_classes,
        )