update model card README.md
Browse files
README.md
CHANGED
@@ -1,18 +1,177 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
|
10 |
-
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- it
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- mozilla-foundation/common_voice_7_0
|
8 |
+
- generated_from_trainer
|
9 |
+
datasets:
|
10 |
+
- common_voice
|
11 |
+
model-index:
|
12 |
+
- name: wav2vec2-xls-r-300m-italian
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# wav2vec2-xls-r-300m-italian
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - IT dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: inf
|
24 |
+
- Wer: 0.1710
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.0003
|
44 |
+
- train_batch_size: 64
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 500
|
50 |
+
- num_epochs: 5.0
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
57 |
+
| No log | 0.04 | 100 | inf | 1.0 |
|
58 |
+
| No log | 0.09 | 200 | inf | 0.9983 |
|
59 |
+
| No log | 0.13 | 300 | inf | 0.7672 |
|
60 |
+
| No log | 0.18 | 400 | inf | 0.6919 |
|
61 |
+
| 2.9929 | 0.22 | 500 | inf | 0.6266 |
|
62 |
+
| 2.9929 | 0.26 | 600 | inf | 0.5513 |
|
63 |
+
| 2.9929 | 0.31 | 700 | inf | 0.5081 |
|
64 |
+
| 2.9929 | 0.35 | 800 | inf | 0.4945 |
|
65 |
+
| 2.9929 | 0.39 | 900 | inf | 0.4720 |
|
66 |
+
| 0.5311 | 0.44 | 1000 | inf | 0.4387 |
|
67 |
+
| 0.5311 | 0.48 | 1100 | inf | 0.4411 |
|
68 |
+
| 0.5311 | 0.53 | 1200 | inf | 0.4429 |
|
69 |
+
| 0.5311 | 0.57 | 1300 | inf | 0.4322 |
|
70 |
+
| 0.5311 | 0.61 | 1400 | inf | 0.4532 |
|
71 |
+
| 0.4654 | 0.66 | 1500 | inf | 0.4492 |
|
72 |
+
| 0.4654 | 0.7 | 1600 | inf | 0.3879 |
|
73 |
+
| 0.4654 | 0.75 | 1700 | inf | 0.3836 |
|
74 |
+
| 0.4654 | 0.79 | 1800 | inf | 0.3743 |
|
75 |
+
| 0.4654 | 0.83 | 1900 | inf | 0.3687 |
|
76 |
+
| 0.4254 | 0.88 | 2000 | inf | 0.3793 |
|
77 |
+
| 0.4254 | 0.92 | 2100 | inf | 0.3766 |
|
78 |
+
| 0.4254 | 0.97 | 2200 | inf | 0.3705 |
|
79 |
+
| 0.4254 | 1.01 | 2300 | inf | 0.3272 |
|
80 |
+
| 0.4254 | 1.05 | 2400 | inf | 0.3185 |
|
81 |
+
| 0.3997 | 1.1 | 2500 | inf | 0.3244 |
|
82 |
+
| 0.3997 | 1.14 | 2600 | inf | 0.3082 |
|
83 |
+
| 0.3997 | 1.18 | 2700 | inf | 0.3040 |
|
84 |
+
| 0.3997 | 1.23 | 2800 | inf | 0.3028 |
|
85 |
+
| 0.3997 | 1.27 | 2900 | inf | 0.3112 |
|
86 |
+
| 0.3668 | 1.32 | 3000 | inf | 0.3110 |
|
87 |
+
| 0.3668 | 1.36 | 3100 | inf | 0.3067 |
|
88 |
+
| 0.3668 | 1.4 | 3200 | inf | 0.2961 |
|
89 |
+
| 0.3668 | 1.45 | 3300 | inf | 0.3081 |
|
90 |
+
| 0.3668 | 1.49 | 3400 | inf | 0.2936 |
|
91 |
+
| 0.3645 | 1.54 | 3500 | inf | 0.3037 |
|
92 |
+
| 0.3645 | 1.58 | 3600 | inf | 0.2974 |
|
93 |
+
| 0.3645 | 1.62 | 3700 | inf | 0.3010 |
|
94 |
+
| 0.3645 | 1.67 | 3800 | inf | 0.2985 |
|
95 |
+
| 0.3645 | 1.71 | 3900 | inf | 0.2976 |
|
96 |
+
| 0.3624 | 1.76 | 4000 | inf | 0.2928 |
|
97 |
+
| 0.3624 | 1.8 | 4100 | inf | 0.2860 |
|
98 |
+
| 0.3624 | 1.84 | 4200 | inf | 0.2922 |
|
99 |
+
| 0.3624 | 1.89 | 4300 | inf | 0.2866 |
|
100 |
+
| 0.3624 | 1.93 | 4400 | inf | 0.2776 |
|
101 |
+
| 0.3527 | 1.97 | 4500 | inf | 0.2792 |
|
102 |
+
| 0.3527 | 2.02 | 4600 | inf | 0.2858 |
|
103 |
+
| 0.3527 | 2.06 | 4700 | inf | 0.2767 |
|
104 |
+
| 0.3527 | 2.11 | 4800 | inf | 0.2824 |
|
105 |
+
| 0.3527 | 2.15 | 4900 | inf | 0.2799 |
|
106 |
+
| 0.3162 | 2.19 | 5000 | inf | 0.2673 |
|
107 |
+
| 0.3162 | 2.24 | 5100 | inf | 0.2962 |
|
108 |
+
| 0.3162 | 2.28 | 5200 | inf | 0.2736 |
|
109 |
+
| 0.3162 | 2.33 | 5300 | inf | 0.2652 |
|
110 |
+
| 0.3162 | 2.37 | 5400 | inf | 0.2551 |
|
111 |
+
| 0.3063 | 2.41 | 5500 | inf | 0.2680 |
|
112 |
+
| 0.3063 | 2.46 | 5600 | inf | 0.2558 |
|
113 |
+
| 0.3063 | 2.5 | 5700 | inf | 0.2598 |
|
114 |
+
| 0.3063 | 2.54 | 5800 | inf | 0.2518 |
|
115 |
+
| 0.3063 | 2.59 | 5900 | inf | 0.2541 |
|
116 |
+
| 0.2913 | 2.63 | 6000 | inf | 0.2507 |
|
117 |
+
| 0.2913 | 2.68 | 6100 | inf | 0.2500 |
|
118 |
+
| 0.2913 | 2.72 | 6200 | inf | 0.2435 |
|
119 |
+
| 0.2913 | 2.76 | 6300 | inf | 0.2376 |
|
120 |
+
| 0.2913 | 2.81 | 6400 | inf | 0.2348 |
|
121 |
+
| 0.2797 | 2.85 | 6500 | inf | 0.2512 |
|
122 |
+
| 0.2797 | 2.9 | 6600 | inf | 0.2382 |
|
123 |
+
| 0.2797 | 2.94 | 6700 | inf | 0.2523 |
|
124 |
+
| 0.2797 | 2.98 | 6800 | inf | 0.2522 |
|
125 |
+
| 0.2797 | 3.03 | 6900 | inf | 0.2409 |
|
126 |
+
| 0.2766 | 3.07 | 7000 | inf | 0.2453 |
|
127 |
+
| 0.2766 | 3.12 | 7100 | inf | 0.2326 |
|
128 |
+
| 0.2766 | 3.16 | 7200 | inf | 0.2286 |
|
129 |
+
| 0.2766 | 3.2 | 7300 | inf | 0.2342 |
|
130 |
+
| 0.2766 | 3.25 | 7400 | inf | 0.2305 |
|
131 |
+
| 0.2468 | 3.29 | 7500 | inf | 0.2238 |
|
132 |
+
| 0.2468 | 3.33 | 7600 | inf | 0.2321 |
|
133 |
+
| 0.2468 | 3.38 | 7700 | inf | 0.2305 |
|
134 |
+
| 0.2468 | 3.42 | 7800 | inf | 0.2174 |
|
135 |
+
| 0.2468 | 3.47 | 7900 | inf | 0.2201 |
|
136 |
+
| 0.2439 | 3.51 | 8000 | inf | 0.2133 |
|
137 |
+
| 0.2439 | 3.55 | 8100 | inf | 0.2217 |
|
138 |
+
| 0.2439 | 3.6 | 8200 | inf | 0.2189 |
|
139 |
+
| 0.2439 | 3.64 | 8300 | inf | 0.2105 |
|
140 |
+
| 0.2439 | 3.69 | 8400 | inf | 0.2118 |
|
141 |
+
| 0.2357 | 3.73 | 8500 | inf | 0.2093 |
|
142 |
+
| 0.2357 | 3.77 | 8600 | inf | 0.2103 |
|
143 |
+
| 0.2357 | 3.82 | 8700 | inf | 0.2035 |
|
144 |
+
| 0.2357 | 3.86 | 8800 | inf | 0.2019 |
|
145 |
+
| 0.2357 | 3.91 | 8900 | inf | 0.2032 |
|
146 |
+
| 0.2217 | 3.95 | 9000 | inf | 0.2056 |
|
147 |
+
| 0.2217 | 3.99 | 9100 | inf | 0.2022 |
|
148 |
+
| 0.2217 | 4.04 | 9200 | inf | 0.1932 |
|
149 |
+
| 0.2217 | 4.08 | 9300 | inf | 0.1935 |
|
150 |
+
| 0.2217 | 4.12 | 9400 | inf | 0.1906 |
|
151 |
+
| 0.2025 | 4.17 | 9500 | inf | 0.1879 |
|
152 |
+
| 0.2025 | 4.21 | 9600 | inf | 0.1882 |
|
153 |
+
| 0.2025 | 4.26 | 9700 | inf | 0.1854 |
|
154 |
+
| 0.2025 | 4.3 | 9800 | inf | 0.1865 |
|
155 |
+
| 0.2025 | 4.34 | 9900 | inf | 0.1844 |
|
156 |
+
| 0.1869 | 4.39 | 10000 | inf | 0.1822 |
|
157 |
+
| 0.1869 | 4.43 | 10100 | inf | 0.1815 |
|
158 |
+
| 0.1869 | 4.48 | 10200 | inf | 0.1812 |
|
159 |
+
| 0.1869 | 4.52 | 10300 | inf | 0.1792 |
|
160 |
+
| 0.1869 | 4.56 | 10400 | inf | 0.1797 |
|
161 |
+
| 0.1863 | 4.61 | 10500 | inf | 0.1774 |
|
162 |
+
| 0.1863 | 4.65 | 10600 | inf | 0.1767 |
|
163 |
+
| 0.1863 | 4.7 | 10700 | inf | 0.1765 |
|
164 |
+
| 0.1863 | 4.74 | 10800 | inf | 0.1753 |
|
165 |
+
| 0.1863 | 4.78 | 10900 | inf | 0.1731 |
|
166 |
+
| 0.178 | 4.83 | 11000 | inf | 0.1727 |
|
167 |
+
| 0.178 | 4.87 | 11100 | inf | 0.1724 |
|
168 |
+
| 0.178 | 4.91 | 11200 | inf | 0.1722 |
|
169 |
+
| 0.178 | 4.96 | 11300 | inf | 0.1712 |
|
170 |
+
|
171 |
+
|
172 |
+
### Framework versions
|
173 |
+
|
174 |
+
- Transformers 4.16.0.dev0
|
175 |
+
- Pytorch 1.10.1+cu102
|
176 |
+
- Datasets 1.17.1.dev0
|
177 |
+
- Tokenizers 0.11.0
|