dcduplooy commited on
Commit
c5c5352
1 Parent(s): ec4e432

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1789.61 +/- 75.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67e033d998f7fb9903bcb01c21c42180d3ea145779bf9cc9b813b3e62077df15
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f87203c9dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f87203c9e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f87203c9ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f87203c9f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f87203cb040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f87203cb0d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f87203cb160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f87203cb1f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f87203cb280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f87203cb310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f87203cb3a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f87203cb430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f87203c6e00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678316938369255828,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADriFL+5938/4Z+ovkAR1b5hHBA+Fp0cPhsXAz7oRbu+xVsUPgLw0D7sdZ8+GkA/PyMxgb7ef3+/N4+2Psvln75O/mK/hgdavjq3Lj/y1Hg/4gPKPwZpLb9lXZQ+3N7nPtNagz8YIik/hw60PuHBGD9j6zk/gXVjP2qnLr4vEa4/+Ro2vmZpF8BgB2g/xd1tv4Im0bx/6xVAYirePqx9hz9ZKk0/dJRAvwtvhT7uFtA/vmsLv3z0C70YmEI/1NGKPyR/4j3UicU/PAsVvmtdsL43dnm/pb3Bv4cOtD6Zgta/XV/RPi+hsL84+jE/L7pXPuMrhr4gAwK/2VmePfLyeL/PYIA+IqR9P9xa9z1QATa+AOfUvuvRDz2mMoE9Ye4pP6pZ3T+9XDg/ppH7Pokhjb+wvZ25xEOxPyS2ZT+7wli/N3Z5vxgiKT+HDrQ+4cEYP6qRgT10Dzm/Muw6P/ugaD9NIhA/Jb2EP20avb4jLbO/bwYUPyiF9L/TiKo+bgf4PD37mb83Bos9OEPcPlPEXr7mjX0/0So0vpDNQj8WPhI8j5vUvneqvL+fLag/1mWKvjd2eb8YIik/hw60PuHBGD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABzviQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmN9tvQAAAABOeNu/AAAAACEtnr0AAAAAcK36PwAAAAAl3JC9AAAAADnY4j8AAAAAM9T0vQAAAABjaNy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw9uHNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgF5aBr4AAAAAUST0vwAAAAARLYM9AAAAAI033z8AAAAAp3uEvQAAAABJSN8/AAAAAOGRG70AAAAAllvrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB80LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOXr88AAAAABjY5r8AAAAAGNlFPQAAAACeT+w/AAAAALKsLD0AAAAAZ//pPwAAAAC/OQM+AAAAABti+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbZQW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8J3dPQAAAAB+huG/AAAAAKa0sb0AAAAAStMAQAAAAAAztRk9AAAAAN1r8j8AAAAAy0+FvQAAAAApV+O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRI34sVcliMAWyUTegDjAF0lEdAr/07ArQPZ3V9lChoBkdAlh3FktmL+GgHTegDaAhHQK/++QFLWZt1fZQoaAZHQJVT8N5MURFoB03oA2gIR0CwAw74WUKRdX2UKGgGR0CVp/lGgBcSaAdN6ANoCEdAsAP0fnwG4nV9lChoBkdAlcGLhaTwD2gHTegDaAhHQLAHMMuez2R1fZQoaAZHQJV3TtWuHN5oB03oA2gIR0CwCAkLDye7dX2UKGgGR0CVvkvCdjG2aAdN6ANoCEdAsArzRrrPdHV9lChoBkdAlO3XsTnJT2gHTegDaAhHQLALhrYGt6p1fZQoaAZHQJR6kEOiFkBoB03oA2gIR0CwDY2hufmLdX2UKGgGR0CV848FINExaAdN6ANoCEdAsA5pinYQKHV9lChoBkdAllwDK5kK/mgHTegDaAhHQLARn2TgVGl1fZQoaAZHQJR1h1bJOnFoB03oA2gIR0CwEndJnQIEdX2UKGgGR0CVwtkiliz+aAdN6ANoCEdAsBW5O32EkHV9lChoBkdAlONJt78ejmgHTegDaAhHQLAXCqJMxoJ1fZQoaAZHQJNbCr2g399oB03oA2gIR0CwGfx3eN1hdX2UKGgGR0CQ7pcbBGhFaAdN6ANoCEdAsBqGt8uzyHV9lChoBkdAkqSwQ176YWgHTegDaAhHQLAclExIre91fZQoaAZHQJNrohOgxrVoB03oA2gIR0CwHXllf7aadX2UKGgGR0CRrDYJ3PiUaAdN6ANoCEdAsCB4QWepXXV9lChoBkdAlIkekHlfZ2gHTegDaAhHQLAhNauwHJN1fZQoaAZHQJO/pl6JIlNoB03oA2gIR0CwJINNSIgvdX2UKGgGR0B6f4HyEtdzaAdN6ANoCEdAsCXmRYA80XV9lChoBkdAg6bXsPatcWgHTegDaAhHQLArBzeoDPp1fZQoaAZHQHdD7ylN1yNoB03oA2gIR0CwK/tGqgh9dX2UKGgGR0COo/x7zCk5aAdN6ANoCEdAsC4mBshxHXV9lChoBkdAigt4Yzi0fGgHTegDaAhHQLAvAXLNfPZ1fZQoaAZHQJJMghOgxrVoB03oA2gIR0CwMexzRx95dX2UKGgGR0CWACOT7l7uaAdN6ANoCEdAsDKAsmOU+3V9lChoBkdAlPU8f3evZGgHTegDaAhHQLA0kTt9hJB1fZQoaAZHQJRMQPJ7sv9oB03oA2gIR0CwNW6rzXjEdX2UKGgGR0CWaUIsAeaKaAdN6ANoCEdAsDm82MsH0XV9lChoBkdAlKUGL9/BnGgHTegDaAhHQLA6pu89Oh11fZQoaAZHQJOAgm2LHdZoB03oA2gIR0CwPWXHBDXwdX2UKGgGR0CWauTl1bJPaAdN6ANoCEdAsD5Ifms/6nV9lChoBkdAllk1rM1TBWgHTegDaAhHQLBBPLfk3jx1fZQoaAZHQJboamALApNoB03oA2gIR0CwQc5swco6dX2UKGgGR0CW8hLQokRjaAdN6ANoCEdAsEPlYRujynV9lChoBkdAllC5M10knmgHTegDaAhHQLBExXhfjS51fZQoaAZHQJZClH6MzdloB03oA2gIR0CwSIyf16E8dX2UKGgGR0CWR/fp2U0OaAdN6ANoCEdAsEl40HhS+HV9lChoBkdAl1lQAU+LWWgHTegDaAhHQLBMlTm4iHJ1fZQoaAZHQJbzowL3K0VoB03oA2gIR0CwTXGXgLqmdX2UKGgGR0CXCTd5prULaAdN6ANoCEdAsFBjPE87p3V9lChoBkdAlbXHKr7wa2gHTegDaAhHQLBQ9Nzr/sF1fZQoaAZHQJTs5DE3sHBoB03oA2gIR0CwUwn8XN1RdX2UKGgGR0CWR3imEXchaAdN6ANoCEdAsFPwm8dxQ3V9lChoBkdAkb+ERe1KG2gHTegDaAhHQLBXUWM0gr91fZQoaAZHQJGrpLHuJDVoB03oA2gIR0CwWCxtpEhJdX2UKGgGR0CWApxtYSxraAdN6ANoCEdAsFugxEfDDXV9lChoBkdAl3pJNsWO62gHTegDaAhHQLBcw0HyEtd1fZQoaAZHQJfyQsRQJoloB03oA2gIR0CwX71wYLssdX2UKGgGR0CX7cE3bVSXaAdN6ANoCEdAsGBVZq20A3V9lChoBkdAmFN3AmAskWgHTegDaAhHQLBieOzIFNd1fZQoaAZHQJZBmpfhMrVoB03oA2gIR0CwY1ngpBomdX2UKGgGR0CYoQAn2IweaAdN6ANoCEdAsGZMEkjX4HV9lChoBkdAlw/EvoNd7mgHTegDaAhHQLBnMGlhw2l1fZQoaAZHQJi37T3IuGtoB03oA2gIR0CwaoG3vx6OdX2UKGgGR0CZ4BeGfwqiaAdN6ANoCEdAsGvwL5RCQnV9lChoBkdAlrXwDFId2mgHTegDaAhHQLBvOIu5BkZ1fZQoaAZHQJTTeqtHQQdoB03oA2gIR0Cwb8cawUxmdX2UKGgGR0CZKtoZAIIGaAdN6ANoCEdAsHHs9xIatXV9lChoBkdAmLmBlcyFf2gHTegDaAhHQLByygSOBDp1fZQoaAZHQJi4PTfBN21oB03oA2gIR0CwddD2nKnvdX2UKGgGR0CZTlQ6p5u7aAdN6ANoCEdAsHZgXMyJsXV9lChoBkdAmYDR+jM3ZWgHTegDaAhHQLB5mYQrc0t1fZQoaAZHQJqa7c1wYLtoB03oA2gIR0CwexMEzO5bdX2UKGgGR0CaCZXXyy2QaAdN6ANoCEdAsH7BkupS8HV9lChoBkdAmEdTM3ZPEmgHTegDaAhHQLB/UUuL7411fZQoaAZHQJjrvR/mT1VoB03oA2gIR0CwgXDkU9IPdX2UKGgGR0CYYjyTpxFRaAdN6ANoCEdAsIJPJZGKAXV9lChoBkdAl0SSfQKKHmgHTegDaAhHQLCFRjghr311fZQoaAZHQJhHYW69TP1oB03oA2gIR0CwhdsasIVudX2UKGgGR0CVJa6LOzIFaAdN6ANoCEdAsIh9Z4fOlnV9lChoBkdAmgmsxj8UEmgHTegDaAhHQLCJ03V09yN1fZQoaAZHQJqyqnfl6qtoB03oA2gIR0CwjhEi+tbLdX2UKGgGR0CZf+d4FA3UaAdN6ANoCEdAsI6mrQw9JXV9lChoBkdAlmsghje9BmgHTegDaAhHQLCQsW1MM7V1fZQoaAZHQJkL6OfdyktoB03oA2gIR0CwkZdWU8msdX2UKGgGR0CYgKT/hl19aAdN6ANoCEdAsJSNB8hLXnV9lChoBkdAmW+UFjd56mgHTegDaAhHQLCVH8iOeat1fZQoaAZHQJbhWiyprDZoB03oA2gIR0Cwl3OdwvQGdX2UKGgGR0CZ6UfSQYDUaAdN6ANoCEdAsJjLmuDBdnV9lChoBkdAmdcRH5Jsf2gHTegDaAhHQLCdcDZlFtt1fZQoaAZHQJg4a/vfCQ9oB03oA2gIR0CwngdmL9/CdX2UKGgGR0CYYaMrEtNBaAdN6ANoCEdAsKArpwCKaXV9lChoBkdAmVjSK3uuzWgHTegDaAhHQLChCNRm9QJ1fZQoaAZHQJj/YmzByjpoB03oA2gIR0CwpBBysCDFdX2UKGgGR0CY9U6X0Gu+aAdN6ANoCEdAsKSi3DvVmXV9lChoBkdAlkkym/FirmgHTegDaAhHQLCmt8dPtUp1fZQoaAZHQJmW2jk+5e9oB03oA2gIR0Cwp9piNKh+dX2UKGgGR0CYPK5bhWHUaAdN6ANoCEdAsKy1f3N9pnV9lChoBkdAmTsMmnfl62gHTegDaAhHQLCte6PbO/t1fZQoaAZHQJnOPj4pMHtoB03oA2gIR0Cwr4iE6DGtdX2UKGgGR0CbANFGXokiaAdN6ANoCEdAsLBq7mMfinV9lChoBkdAmxEF5WzWw2gHTegDaAhHQLCzY4Vymyh1fZQoaAZHQJkokqtozvZoB03oA2gIR0Cws/G8qWkadX2UKGgGR0CZTdS8J2MbaAdN6ANoCEdAsLYTcRDkVHV9lChoBkdAmPPzjWCmM2gHTegDaAhHQLC29FEiMYN1fZQoaAZHQJnEwF9roGJoB03oA2gIR0Cwu5Csny/cdX2UKGgGR0CZQABXjlxPaAdN6ANoCEdAsLyEkxASnXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a18db9be4d24c717eef54474252764f6ac570a51ca6979203ae62495bbe30a2
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63b59c2241d4701ddb7dc728775ad3721ee8c45357c1b6b64671a6e411ae9ff8
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f87203c9dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f87203c9e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f87203c9ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f87203c9f70>", "_build": "<function ActorCriticPolicy._build at 0x7f87203cb040>", "forward": "<function ActorCriticPolicy.forward at 0x7f87203cb0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f87203cb160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f87203cb1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f87203cb280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f87203cb310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f87203cb3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f87203cb430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f87203c6e00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678316938369255828, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADriFL+5938/4Z+ovkAR1b5hHBA+Fp0cPhsXAz7oRbu+xVsUPgLw0D7sdZ8+GkA/PyMxgb7ef3+/N4+2Psvln75O/mK/hgdavjq3Lj/y1Hg/4gPKPwZpLb9lXZQ+3N7nPtNagz8YIik/hw60PuHBGD9j6zk/gXVjP2qnLr4vEa4/+Ro2vmZpF8BgB2g/xd1tv4Im0bx/6xVAYirePqx9hz9ZKk0/dJRAvwtvhT7uFtA/vmsLv3z0C70YmEI/1NGKPyR/4j3UicU/PAsVvmtdsL43dnm/pb3Bv4cOtD6Zgta/XV/RPi+hsL84+jE/L7pXPuMrhr4gAwK/2VmePfLyeL/PYIA+IqR9P9xa9z1QATa+AOfUvuvRDz2mMoE9Ye4pP6pZ3T+9XDg/ppH7Pokhjb+wvZ25xEOxPyS2ZT+7wli/N3Z5vxgiKT+HDrQ+4cEYP6qRgT10Dzm/Muw6P/ugaD9NIhA/Jb2EP20avb4jLbO/bwYUPyiF9L/TiKo+bgf4PD37mb83Bos9OEPcPlPEXr7mjX0/0So0vpDNQj8WPhI8j5vUvneqvL+fLag/1mWKvjd2eb8YIik/hw60PuHBGD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABzviQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmN9tvQAAAABOeNu/AAAAACEtnr0AAAAAcK36PwAAAAAl3JC9AAAAADnY4j8AAAAAM9T0vQAAAABjaNy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw9uHNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgF5aBr4AAAAAUST0vwAAAAARLYM9AAAAAI033z8AAAAAp3uEvQAAAABJSN8/AAAAAOGRG70AAAAAllvrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB80LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOXr88AAAAABjY5r8AAAAAGNlFPQAAAACeT+w/AAAAALKsLD0AAAAAZ//pPwAAAAC/OQM+AAAAABti+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbZQW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8J3dPQAAAAB+huG/AAAAAKa0sb0AAAAAStMAQAAAAAAztRk9AAAAAN1r8j8AAAAAy0+FvQAAAAApV+O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJRI34sVcliMAWyUTegDjAF0lEdAr/07ArQPZ3V9lChoBkdAlh3FktmL+GgHTegDaAhHQK/++QFLWZt1fZQoaAZHQJVT8N5MURFoB03oA2gIR0CwAw74WUKRdX2UKGgGR0CVp/lGgBcSaAdN6ANoCEdAsAP0fnwG4nV9lChoBkdAlcGLhaTwD2gHTegDaAhHQLAHMMuez2R1fZQoaAZHQJV3TtWuHN5oB03oA2gIR0CwCAkLDye7dX2UKGgGR0CVvkvCdjG2aAdN6ANoCEdAsArzRrrPdHV9lChoBkdAlO3XsTnJT2gHTegDaAhHQLALhrYGt6p1fZQoaAZHQJR6kEOiFkBoB03oA2gIR0CwDY2hufmLdX2UKGgGR0CV848FINExaAdN6ANoCEdAsA5pinYQKHV9lChoBkdAllwDK5kK/mgHTegDaAhHQLARn2TgVGl1fZQoaAZHQJR1h1bJOnFoB03oA2gIR0CwEndJnQIEdX2UKGgGR0CVwtkiliz+aAdN6ANoCEdAsBW5O32EkHV9lChoBkdAlONJt78ejmgHTegDaAhHQLAXCqJMxoJ1fZQoaAZHQJNbCr2g399oB03oA2gIR0CwGfx3eN1hdX2UKGgGR0CQ7pcbBGhFaAdN6ANoCEdAsBqGt8uzyHV9lChoBkdAkqSwQ176YWgHTegDaAhHQLAclExIre91fZQoaAZHQJNrohOgxrVoB03oA2gIR0CwHXllf7aadX2UKGgGR0CRrDYJ3PiUaAdN6ANoCEdAsCB4QWepXXV9lChoBkdAlIkekHlfZ2gHTegDaAhHQLAhNauwHJN1fZQoaAZHQJO/pl6JIlNoB03oA2gIR0CwJINNSIgvdX2UKGgGR0B6f4HyEtdzaAdN6ANoCEdAsCXmRYA80XV9lChoBkdAg6bXsPatcWgHTegDaAhHQLArBzeoDPp1fZQoaAZHQHdD7ylN1yNoB03oA2gIR0CwK/tGqgh9dX2UKGgGR0COo/x7zCk5aAdN6ANoCEdAsC4mBshxHXV9lChoBkdAigt4Yzi0fGgHTegDaAhHQLAvAXLNfPZ1fZQoaAZHQJJMghOgxrVoB03oA2gIR0CwMexzRx95dX2UKGgGR0CWACOT7l7uaAdN6ANoCEdAsDKAsmOU+3V9lChoBkdAlPU8f3evZGgHTegDaAhHQLA0kTt9hJB1fZQoaAZHQJRMQPJ7sv9oB03oA2gIR0CwNW6rzXjEdX2UKGgGR0CWaUIsAeaKaAdN6ANoCEdAsDm82MsH0XV9lChoBkdAlKUGL9/BnGgHTegDaAhHQLA6pu89Oh11fZQoaAZHQJOAgm2LHdZoB03oA2gIR0CwPWXHBDXwdX2UKGgGR0CWauTl1bJPaAdN6ANoCEdAsD5Ifms/6nV9lChoBkdAllk1rM1TBWgHTegDaAhHQLBBPLfk3jx1fZQoaAZHQJboamALApNoB03oA2gIR0CwQc5swco6dX2UKGgGR0CW8hLQokRjaAdN6ANoCEdAsEPlYRujynV9lChoBkdAllC5M10knmgHTegDaAhHQLBExXhfjS51fZQoaAZHQJZClH6MzdloB03oA2gIR0CwSIyf16E8dX2UKGgGR0CWR/fp2U0OaAdN6ANoCEdAsEl40HhS+HV9lChoBkdAl1lQAU+LWWgHTegDaAhHQLBMlTm4iHJ1fZQoaAZHQJbzowL3K0VoB03oA2gIR0CwTXGXgLqmdX2UKGgGR0CXCTd5prULaAdN6ANoCEdAsFBjPE87p3V9lChoBkdAlbXHKr7wa2gHTegDaAhHQLBQ9Nzr/sF1fZQoaAZHQJTs5DE3sHBoB03oA2gIR0CwUwn8XN1RdX2UKGgGR0CWR3imEXchaAdN6ANoCEdAsFPwm8dxQ3V9lChoBkdAkb+ERe1KG2gHTegDaAhHQLBXUWM0gr91fZQoaAZHQJGrpLHuJDVoB03oA2gIR0CwWCxtpEhJdX2UKGgGR0CWApxtYSxraAdN6ANoCEdAsFugxEfDDXV9lChoBkdAl3pJNsWO62gHTegDaAhHQLBcw0HyEtd1fZQoaAZHQJfyQsRQJoloB03oA2gIR0CwX71wYLssdX2UKGgGR0CX7cE3bVSXaAdN6ANoCEdAsGBVZq20A3V9lChoBkdAmFN3AmAskWgHTegDaAhHQLBieOzIFNd1fZQoaAZHQJZBmpfhMrVoB03oA2gIR0CwY1ngpBomdX2UKGgGR0CYoQAn2IweaAdN6ANoCEdAsGZMEkjX4HV9lChoBkdAlw/EvoNd7mgHTegDaAhHQLBnMGlhw2l1fZQoaAZHQJi37T3IuGtoB03oA2gIR0CwaoG3vx6OdX2UKGgGR0CZ4BeGfwqiaAdN6ANoCEdAsGvwL5RCQnV9lChoBkdAlrXwDFId2mgHTegDaAhHQLBvOIu5BkZ1fZQoaAZHQJTTeqtHQQdoB03oA2gIR0Cwb8cawUxmdX2UKGgGR0CZKtoZAIIGaAdN6ANoCEdAsHHs9xIatXV9lChoBkdAmLmBlcyFf2gHTegDaAhHQLByygSOBDp1fZQoaAZHQJi4PTfBN21oB03oA2gIR0CwddD2nKnvdX2UKGgGR0CZTlQ6p5u7aAdN6ANoCEdAsHZgXMyJsXV9lChoBkdAmYDR+jM3ZWgHTegDaAhHQLB5mYQrc0t1fZQoaAZHQJqa7c1wYLtoB03oA2gIR0CwexMEzO5bdX2UKGgGR0CaCZXXyy2QaAdN6ANoCEdAsH7BkupS8HV9lChoBkdAmEdTM3ZPEmgHTegDaAhHQLB/UUuL7411fZQoaAZHQJjrvR/mT1VoB03oA2gIR0CwgXDkU9IPdX2UKGgGR0CYYjyTpxFRaAdN6ANoCEdAsIJPJZGKAXV9lChoBkdAl0SSfQKKHmgHTegDaAhHQLCFRjghr311fZQoaAZHQJhHYW69TP1oB03oA2gIR0CwhdsasIVudX2UKGgGR0CVJa6LOzIFaAdN6ANoCEdAsIh9Z4fOlnV9lChoBkdAmgmsxj8UEmgHTegDaAhHQLCJ03V09yN1fZQoaAZHQJqyqnfl6qtoB03oA2gIR0CwjhEi+tbLdX2UKGgGR0CZf+d4FA3UaAdN6ANoCEdAsI6mrQw9JXV9lChoBkdAlmsghje9BmgHTegDaAhHQLCQsW1MM7V1fZQoaAZHQJkL6OfdyktoB03oA2gIR0CwkZdWU8msdX2UKGgGR0CYgKT/hl19aAdN6ANoCEdAsJSNB8hLXnV9lChoBkdAmW+UFjd56mgHTegDaAhHQLCVH8iOeat1fZQoaAZHQJbhWiyprDZoB03oA2gIR0Cwl3OdwvQGdX2UKGgGR0CZ6UfSQYDUaAdN6ANoCEdAsJjLmuDBdnV9lChoBkdAmdcRH5Jsf2gHTegDaAhHQLCdcDZlFtt1fZQoaAZHQJg4a/vfCQ9oB03oA2gIR0CwngdmL9/CdX2UKGgGR0CYYaMrEtNBaAdN6ANoCEdAsKArpwCKaXV9lChoBkdAmVjSK3uuzWgHTegDaAhHQLChCNRm9QJ1fZQoaAZHQJj/YmzByjpoB03oA2gIR0CwpBBysCDFdX2UKGgGR0CY9U6X0Gu+aAdN6ANoCEdAsKSi3DvVmXV9lChoBkdAlkkym/FirmgHTegDaAhHQLCmt8dPtUp1fZQoaAZHQJmW2jk+5e9oB03oA2gIR0Cwp9piNKh+dX2UKGgGR0CYPK5bhWHUaAdN6ANoCEdAsKy1f3N9pnV9lChoBkdAmTsMmnfl62gHTegDaAhHQLCte6PbO/t1fZQoaAZHQJnOPj4pMHtoB03oA2gIR0Cwr4iE6DGtdX2UKGgGR0CbANFGXokiaAdN6ANoCEdAsLBq7mMfinV9lChoBkdAmxEF5WzWw2gHTegDaAhHQLCzY4Vymyh1fZQoaAZHQJkokqtozvZoB03oA2gIR0Cws/G8qWkadX2UKGgGR0CZTdS8J2MbaAdN6ANoCEdAsLYTcRDkVHV9lChoBkdAmPPzjWCmM2gHTegDaAhHQLC29FEiMYN1fZQoaAZHQJnEwF9roGJoB03oA2gIR0Cwu5Csny/cdX2UKGgGR0CZQABXjlxPaAdN6ANoCEdAsLyEkxASnXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b0c64739dfd2c5ed9e6740150ef24ccf2a0ea1bf8404d5462b762271905dc8e
3
+ size 1169203
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1789.6084905803668, "std_reward": 75.44920749655157, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T00:31:11.903577"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb1d604f9ac01d085440018284d8f3ec5a1192ec698b2edda65fc83a55b724ea
3
+ size 2136