ddkk11's picture
My third try
6faa404 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78c82b828550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78c82b8285e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78c82b828670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78c82b828700>", "_build": "<function ActorCriticPolicy._build at 0x78c82b828790>", "forward": "<function ActorCriticPolicy.forward at 0x78c82b828820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78c82b8288b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78c82b828940>", "_predict": "<function ActorCriticPolicy._predict at 0x78c82b8289d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78c82b828a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78c82b828af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78c82b828b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78c82b7cf900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1612800, "_total_timesteps": 1600000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726810908401000077, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1MJT3hWrS4r/EROO+uMK9/lwW8/i8wtwAAgD8AAIA/qOSQvgAfWj9qGmm+Iibwvi41Bb+dshS9AAAAAAAAAAD66QO+8rE/P+MBzz4pceW+JOb/vMKogD4AAAAAAAAAAGYQET1qXa8/qiMxP5RD1b7OP8C8x7cKvAAAAAAAAAAAzXjCPUizuLotmDs4RD8yM5HD/jlly1W3AAAAAAAAgD9QP2m+X02EP8DdIb4ZX9++xpMDv1NFp70AAAAAAAAAACbbvb0NDag/wCKVvnTi9r4rIGS+lvQ8vgAAAAAAAAAA7c12PhBYUD9yBbA96tjTvkirZD5ANLC9AAAAAAAAAAAanxI+pQifP+Y1CD8ustu+FHFTPlumtz4AAAAAAAAAAE1rML0gMZk/rO4Cvn9FAb8CmUi+B5pEvgAAAAAAAAAA5pZQPSnoQ7pHREi1xAU5r+cMSLuDcUI0AACAPwAAgD8zcHU9LFZTPth2Ur6LcZG+/7epvY4IXD0AAAAAAAAAADPZPD1oOrY/R0ukPlr2B76H+Z25fTsJPQAAAAAAAAAAZicfPSro2D5KpTg+W1K6vrzbDT0MrDU+AAAAAAAAAADjCoo+xl9FPy7or71FjLK+DWVBPqUKW74AAAAAAAAAAM3AFD0pBHC6BSdeND5ioC/8t+s6y8KPswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008000000000000007, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFTGE4//vSMAWyUS/SMAXSUR0CjtLa0IC2ddX2UKGgGR0BxsIYl6Z6VaAdL9WgIR0CjtL+w1R+CdX2UKGgGR0BzHqpiqhlEaAdL32gIR0CjtNL/0dzXdX2UKGgGR0Bw0KvfTCtSaAdL82gIR0CjtTmwqy4XdX2UKGgGR0Bt3xDLKV6eaAdL+WgIR0CjtY6Rhc7hdX2UKGgGR0ByKNZFG5MDaAdL6WgIR0CjtcDhtLtedX2UKGgGR0BykPOs1baAaAdL/WgIR0Cjtfg/1QIldX2UKGgGR0Bxh2g/TspoaAdL2WgIR0CjthLGza9LdX2UKGgGR0BvqWVRk3CLaAdL+GgIR0Cjthl0PpY+dX2UKGgGR0Bxy/JGOMl1aAdL22gIR0Cjtl3Hq/ucdX2UKGgGR0BxUCJ/G2kSaAdNAwFoCEdAo7ceOGTLXHV9lChoBkdAcaDLzPKMemgHTRABaAhHQKO3GSWZ7Xx1fZQoaAZHQHHtV05lvqFoB00LAWgIR0Cjt9CN83MqdX2UKGgGR0BvGxfa6BiDaAdL4GgIR0CjuILTpgTidX2UKGgGR0Buau3Sa3I/aAdL8GgIR0CjuJr8zhxYdX2UKGgGR0BwMJsi0OVgaAdL+mgIR0CjuNHktEofdX2UKGgGR0Bv65NTLns+aAdL6mgIR0CjuQVdHDrJdX2UKGgGR0Bt3FCZ4Oc2aAdL7WgIR0CjuSJvHcUNdX2UKGgGR0Byp0HzH0btaAdL8GgIR0CjuUduxbB5dX2UKGgGR0BxeoyzollcaAdL4mgIR0CjuXJcHGCJdX2UKGgGR0BwSaTxG2CvaAdL6GgIR0CjybyP+4smdX2UKGgGR0Bw/bQUpNKzaAdL3WgIR0CjybTV2A5JdX2UKGgGR0BylWLCN0eVaAdL4mgIR0CjyfrcsUZfdX2UKGgGR0BxVsvTPSlWaAdL3WgIR0CjygbjtG/fdX2UKGgGR0BxRIwL3K0VaAdL3mgIR0CjygVYZEUkdX2UKGgGR0BzAP7Lt/nXaAdL02gIR0CjysUwi7kGdX2UKGgGR0ByJHvYvnKXaAdNEAFoCEdAo8sNHH3lCHV9lChoBkdAbnq2tuDSPWgHS/9oCEdAo8uhx3mmtXV9lChoBkdAbwbwDNhVl2gHS+FoCEdAo8u6WJJoTXV9lChoBkdAcGrrJbMX8GgHS9hoCEdAo8wy0v4/NnV9lChoBkdAcDqf16E8JWgHS95oCEdAo8xiUA1ejXV9lChoBkdAc6YVFQVKw2gHS9doCEdAo8x3+dbxE3V9lChoBkdAcSF02tMfzWgHS9FoCEdAo8zC8OCoTHV9lChoBkdAcyxqaw2VFGgHS/NoCEdAo80hzDGcWnV9lChoBkdAcg+Vlf7aZmgHS/BoCEdAo80sf9xZMnV9lChoBkdAb5alANXo1WgHS/BoCEdAo816d8RcvHV9lChoBkdAbz5QnhKlHmgHS91oCEdAo82HwRXfZXV9lChoBkdAcVUJCSidrmgHS9poCEdAo83G7aqS5nV9lChoBkdAbmOTC+De02gHS+1oCEdAo83LkdV/+nV9lChoBkdAcLBR/mT1TWgHS+doCEdAo83/YWcjJXV9lChoBkdAcXUhw2l2vGgHS/JoCEdAo84uRRuTA3V9lChoBkdAcDdItUXHimgHTQMBaAhHQKPPaJ0nw5N1fZQoaAZHQHAVbqhUR4BoB0v5aAhHQKPPmB6rvLJ1fZQoaAZHQHEBe/xlQMxoB00AAWgIR0Cj0EMjeKsNdX2UKGgGR0BwsfUExIrfaAdL/GgIR0Cj0EnAymALdX2UKGgGR0Bu0lCTlkpaaAdL6WgIR0Cj0LAuh9LIdX2UKGgGR0By+6LvTgEVaAdL/mgIR0Cj0Ofx2B8QdX2UKGgGR0By4pjLB9CvaAdL4GgIR0Cj0OyvkiljdX2UKGgGR0Bs/Sb6P8yfaAdL9mgIR0Cj0QM5GSZCdX2UKGgGR0BxbujsUqQSaAdLzGgIR0Cj0Z8TakAQdX2UKGgGR0BwusUHpr1vaAdL+mgIR0Cj0dn8jzI4dX2UKGgGR0BxNZ+DvmYCaAdNAwFoCEdAo9INyWAwwnV9lChoBkdAcDn3Ux20RmgHS/RoCEdAo9IPnOjZc3V9lChoBkdAcXfaAWi1zGgHS/VoCEdAo9ImgezUqnV9lChoBkdAcPfy57PY4GgHS9poCEdAo9Io371qWXV9lChoBkdAcFQKujh1kmgHS/BoCEdAo9JJBPbfxnV9lChoBkdAca7tr9ETg2gHS+VoCEdAo9J9LHuJDXV9lChoBkdAbaHA0sOG02gHS+9oCEdAo9Pct/WlM3V9lChoBkdAcieM495hSmgHS/RoCEdAo9Qakl/pdXV9lChoBkdAcbMmmce8w2gHS9toCEdAo9TeiN83M3V9lChoBkdAcTHVea8Yh2gHTQEBaAhHQKPVDHNorWl1fZQoaAZHQHE6lJxvNvBoB00IAWgIR0Cj1SjMeOn3dX2UKGgGR0Busr+Lm6oVaAdL7mgIR0Cj1XSXMQmNdX2UKGgGR0BxnTPVurIYaAdL/2gIR0Cj1XTwMH8kdX2UKGgGR0BwcFJmNBGAaAdL4GgIR0Cj1c5MlC1JdX2UKGgGR0Bw3k+X7cfvaAdNCwFoCEdAo9X2oo/iYXV9lChoBkdAcURgNgBtDWgHS9toCEdAo9X0R+SbIHV9lChoBkdAcf4f9gnc+WgHS+poCEdAo9Zo7q6e5HV9lChoBkdAbgfZDiOvMmgHS/BoCEdAo9aYC8vmHXV9lChoBkdAczzid8RcvGgHS+9oCEdAo9bPQ2MsH3V9lChoBkdAbZecNpdrwmgHTQABaAhHQKPXAH6/IsB1fZQoaAZHQGz8UKJEYwZoB0v0aAhHQKPXPvVEuxt1fZQoaAZHQHKPrlRxcVxoB00dAWgIR0Cj15OwHJLedX2UKGgGR0Bx8pUsFt9AaAdL9mgIR0Cj2TPYWcjJdX2UKGgGR0Bx5D9BKL88aAdNCgFoCEdAo9oheAuqWHV9lChoBkdAcc5Ss8xKx2gHS+xoCEdAo9pia7VawHV9lChoBkdAcoW42CNCJGgHS+hoCEdAo9q7qlgtvnV9lChoBkdAcsg88s+V1WgHS/ZoCEdAo9r2hkAggXV9lChoBkdAcxhtP557gWgHS91oCEdAo9sqGN70F3V9lChoBkdAcqQefqX4TWgHS/RoCEdAo9tmryUcGXV9lChoBkdAczsysjmjkGgHS91oCEdAo9tm7+T/yXV9lChoBkdAcg6Hc1wYL2gHS/doCEdAo9t8DwH7g3V9lChoBkdAcqpsz2vjfmgHS99oCEdAo9wu2iL2pXV9lChoBkdAcNhlImPYF2gHS/1oCEdAo9xDXlKbrnV9lChoBkdAcWniBGx2S2gHS8xoCEdAo9xYT7EYO3V9lChoBkdAbaO1og3cYmgHS+toCEdAo9zU1IiC8XV9lChoBkdAbmSl8gIQe2gHS/JoCEdAo91mzhP0qnV9lChoBkdAckUf/WDpT2gHTQ8BaAhHQKPdcW1twaR1fZQoaAZHQHG4ddVvMr5oB0vfaAhHQKPe1MINVip1fZQoaAZHQHAbZQk5ZKZoB0vkaAhHQKPfqJF9a2Z1fZQoaAZHQHAAXDiwSrZoB0vhaAhHQKPfyt7rs0J1fZQoaAZHQHAW6NhmXgNoB0vkaAhHQKPgOjyFwkx1fZQoaAZHQG20IDoyKvVoB0vdaAhHQKPgPW7voeR1fZQoaAZHQHEB3qVyFPBoB00HAWgIR0Cj4MOsT37DdX2UKGgGR0Bxudl9Sde6aAdL92gIR0Cj4Oqp97WvdX2UKGgGR0ByOHDrJKaoaAdNBAFoCEdAo+FGQ0XP7nV9lChoBkdAc0K2SdOIqWgHTQwBaAhHQKPhZi97F851fZQoaAZHQGtYkYO2AoZoB02cAWgIR0Cj4Wbz9S/CdX2UKGgGR0ByhxQTEit8aAdL22gIR0Cj4aGcOLBLdX2UKGgGR0BwCpiH6/IsaAdL/2gIR0Cj4cmCI1tPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 336, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1200, "gamma": 0.9985, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}