File size: 6,378 Bytes
187d856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from __future__ import annotations

from enum import IntEnum
from functools import partial, reduce
from math import dist

import cv2
import numpy as np
from PIL import Image, ImageChops

from adetailer.args import MASK_MERGE_INVERT
from adetailer.common import PredictOutput


class SortBy(IntEnum):
    NONE = 0
    LEFT_TO_RIGHT = 1
    CENTER_TO_EDGE = 2
    AREA = 3


class MergeInvert(IntEnum):
    NONE = 0
    MERGE = 1
    MERGE_INVERT = 2


def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
    return cv2.dilate(arr, kernel, iterations=1)


def _erode(arr: np.ndarray, value: int) -> np.ndarray:
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
    return cv2.erode(arr, kernel, iterations=1)


def dilate_erode(img: Image.Image, value: int) -> Image.Image:
    """
    The dilate_erode function takes an image and a value.
    If the value is positive, it dilates the image by that amount.
    If the value is negative, it erodes the image by that amount.

    Parameters
    ----------
        img: PIL.Image.Image
            the image to be processed
        value: int
            kernel size of dilation or erosion

    Returns
    -------
        PIL.Image.Image
            The image that has been dilated or eroded
    """
    if value == 0:
        return img

    arr = np.array(img)
    arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)

    return Image.fromarray(arr)


def offset(img: Image.Image, x: int = 0, y: int = 0) -> Image.Image:
    """
    The offset function takes an image and offsets it by a given x(β†’) and y(↑) value.

    Parameters
    ----------
        mask: Image.Image
            Pass the mask image to the function
        x: int
            β†’
        y: int
            ↑

    Returns
    -------
        PIL.Image.Image
            A new image that is offset by x and y
    """
    return ImageChops.offset(img, x, -y)


def is_all_black(img: Image.Image) -> bool:
    arr = np.array(img)
    return cv2.countNonZero(arr) == 0


def bbox_area(bbox: list[float]):
    return (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])


def mask_preprocess(
    masks: list[Image.Image],
    kernel: int = 0,
    x_offset: int = 0,
    y_offset: int = 0,
    merge_invert: int | MergeInvert | str = MergeInvert.NONE,
) -> list[Image.Image]:
    """
    The mask_preprocess function takes a list of masks and preprocesses them.
    It dilates and erodes the masks, and offsets them by x_offset and y_offset.

    Parameters
    ----------
        masks: list[Image.Image]
            A list of masks
        kernel: int
            kernel size of dilation or erosion
        x_offset: int
            β†’
        y_offset: int
            ↑

    Returns
    -------
        list[Image.Image]
            A list of processed masks
    """
    if not masks:
        return []

    if x_offset != 0 or y_offset != 0:
        masks = [offset(m, x_offset, y_offset) for m in masks]

    if kernel != 0:
        masks = [dilate_erode(m, kernel) for m in masks]
        masks = [m for m in masks if not is_all_black(m)]

    return mask_merge_invert(masks, mode=merge_invert)


# Bbox sorting
def _key_left_to_right(bbox: list[float]) -> float:
    """
    Left to right

    Parameters
    ----------
    bbox: list[float]
        list of [x1, y1, x2, y2]
    """
    return bbox[0]


def _key_center_to_edge(bbox: list[float], *, center: tuple[float, float]) -> float:
    """
    Center to edge

    Parameters
    ----------
    bbox: list[float]
        list of [x1, y1, x2, y2]
    image: Image.Image
        the image
    """
    bbox_center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
    return dist(center, bbox_center)


def _key_area(bbox: list[float]) -> float:
    """
    Large to small

    Parameters
    ----------
    bbox: list[float]
        list of [x1, y1, x2, y2]
    """
    return -bbox_area(bbox)


def sort_bboxes(
    pred: PredictOutput, order: int | SortBy = SortBy.NONE
) -> PredictOutput:
    if order == SortBy.NONE or len(pred.bboxes) <= 1:
        return pred

    if order == SortBy.LEFT_TO_RIGHT:
        key = _key_left_to_right
    elif order == SortBy.CENTER_TO_EDGE:
        width, height = pred.preview.size
        center = (width / 2, height / 2)
        key = partial(_key_center_to_edge, center=center)
    elif order == SortBy.AREA:
        key = _key_area
    else:
        raise RuntimeError

    items = len(pred.bboxes)
    idx = sorted(range(items), key=lambda i: key(pred.bboxes[i]))
    pred.bboxes = [pred.bboxes[i] for i in idx]
    pred.masks = [pred.masks[i] for i in idx]
    return pred


# Filter by ratio
def is_in_ratio(bbox: list[float], low: float, high: float, orig_area: int) -> bool:
    area = bbox_area(bbox)
    return low <= area / orig_area <= high


def filter_by_ratio(pred: PredictOutput, low: float, high: float) -> PredictOutput:
    if not pred.bboxes:
        return pred

    w, h = pred.preview.size
    orig_area = w * h
    items = len(pred.bboxes)
    idx = [i for i in range(items) if is_in_ratio(pred.bboxes[i], low, high, orig_area)]
    pred.bboxes = [pred.bboxes[i] for i in idx]
    pred.masks = [pred.masks[i] for i in idx]
    return pred


def filter_take_largest(pred: PredictOutput, k: int) -> PredictOutput:
    if not pred.bboxes or k == 0:
        return pred
    areas = [bbox_area(bbox) for bbox in pred.bboxes]
    idx = np.argsort(areas)[-k:]
    pred.bboxes = [pred.bboxes[i] for i in idx]
    pred.masks = [pred.masks[i] for i in idx]
    return pred


# Merge / Invert
def mask_merge(masks: list[Image.Image]) -> list[Image.Image]:
    arrs = [np.array(m) for m in masks]
    arr = reduce(cv2.bitwise_or, arrs)
    return [Image.fromarray(arr)]


def mask_invert(masks: list[Image.Image]) -> list[Image.Image]:
    return [ImageChops.invert(m) for m in masks]


def mask_merge_invert(
    masks: list[Image.Image], mode: int | MergeInvert | str
) -> list[Image.Image]:
    if isinstance(mode, str):
        mode = MASK_MERGE_INVERT.index(mode)

    if mode == MergeInvert.NONE or not masks:
        return masks

    if mode == MergeInvert.MERGE:
        return mask_merge(masks)

    if mode == MergeInvert.MERGE_INVERT:
        merged = mask_merge(masks)
        return mask_invert(merged)

    raise RuntimeError