File size: 6,378 Bytes
187d856 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from __future__ import annotations
from enum import IntEnum
from functools import partial, reduce
from math import dist
import cv2
import numpy as np
from PIL import Image, ImageChops
from adetailer.args import MASK_MERGE_INVERT
from adetailer.common import PredictOutput
class SortBy(IntEnum):
NONE = 0
LEFT_TO_RIGHT = 1
CENTER_TO_EDGE = 2
AREA = 3
class MergeInvert(IntEnum):
NONE = 0
MERGE = 1
MERGE_INVERT = 2
def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
return cv2.dilate(arr, kernel, iterations=1)
def _erode(arr: np.ndarray, value: int) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
return cv2.erode(arr, kernel, iterations=1)
def dilate_erode(img: Image.Image, value: int) -> Image.Image:
"""
The dilate_erode function takes an image and a value.
If the value is positive, it dilates the image by that amount.
If the value is negative, it erodes the image by that amount.
Parameters
----------
img: PIL.Image.Image
the image to be processed
value: int
kernel size of dilation or erosion
Returns
-------
PIL.Image.Image
The image that has been dilated or eroded
"""
if value == 0:
return img
arr = np.array(img)
arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)
return Image.fromarray(arr)
def offset(img: Image.Image, x: int = 0, y: int = 0) -> Image.Image:
"""
The offset function takes an image and offsets it by a given x(β) and y(β) value.
Parameters
----------
mask: Image.Image
Pass the mask image to the function
x: int
β
y: int
β
Returns
-------
PIL.Image.Image
A new image that is offset by x and y
"""
return ImageChops.offset(img, x, -y)
def is_all_black(img: Image.Image) -> bool:
arr = np.array(img)
return cv2.countNonZero(arr) == 0
def bbox_area(bbox: list[float]):
return (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
def mask_preprocess(
masks: list[Image.Image],
kernel: int = 0,
x_offset: int = 0,
y_offset: int = 0,
merge_invert: int | MergeInvert | str = MergeInvert.NONE,
) -> list[Image.Image]:
"""
The mask_preprocess function takes a list of masks and preprocesses them.
It dilates and erodes the masks, and offsets them by x_offset and y_offset.
Parameters
----------
masks: list[Image.Image]
A list of masks
kernel: int
kernel size of dilation or erosion
x_offset: int
β
y_offset: int
β
Returns
-------
list[Image.Image]
A list of processed masks
"""
if not masks:
return []
if x_offset != 0 or y_offset != 0:
masks = [offset(m, x_offset, y_offset) for m in masks]
if kernel != 0:
masks = [dilate_erode(m, kernel) for m in masks]
masks = [m for m in masks if not is_all_black(m)]
return mask_merge_invert(masks, mode=merge_invert)
# Bbox sorting
def _key_left_to_right(bbox: list[float]) -> float:
"""
Left to right
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
"""
return bbox[0]
def _key_center_to_edge(bbox: list[float], *, center: tuple[float, float]) -> float:
"""
Center to edge
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
image: Image.Image
the image
"""
bbox_center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
return dist(center, bbox_center)
def _key_area(bbox: list[float]) -> float:
"""
Large to small
Parameters
----------
bbox: list[float]
list of [x1, y1, x2, y2]
"""
return -bbox_area(bbox)
def sort_bboxes(
pred: PredictOutput, order: int | SortBy = SortBy.NONE
) -> PredictOutput:
if order == SortBy.NONE or len(pred.bboxes) <= 1:
return pred
if order == SortBy.LEFT_TO_RIGHT:
key = _key_left_to_right
elif order == SortBy.CENTER_TO_EDGE:
width, height = pred.preview.size
center = (width / 2, height / 2)
key = partial(_key_center_to_edge, center=center)
elif order == SortBy.AREA:
key = _key_area
else:
raise RuntimeError
items = len(pred.bboxes)
idx = sorted(range(items), key=lambda i: key(pred.bboxes[i]))
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
# Filter by ratio
def is_in_ratio(bbox: list[float], low: float, high: float, orig_area: int) -> bool:
area = bbox_area(bbox)
return low <= area / orig_area <= high
def filter_by_ratio(pred: PredictOutput, low: float, high: float) -> PredictOutput:
if not pred.bboxes:
return pred
w, h = pred.preview.size
orig_area = w * h
items = len(pred.bboxes)
idx = [i for i in range(items) if is_in_ratio(pred.bboxes[i], low, high, orig_area)]
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
def filter_take_largest(pred: PredictOutput, k: int) -> PredictOutput:
if not pred.bboxes or k == 0:
return pred
areas = [bbox_area(bbox) for bbox in pred.bboxes]
idx = np.argsort(areas)[-k:]
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
# Merge / Invert
def mask_merge(masks: list[Image.Image]) -> list[Image.Image]:
arrs = [np.array(m) for m in masks]
arr = reduce(cv2.bitwise_or, arrs)
return [Image.fromarray(arr)]
def mask_invert(masks: list[Image.Image]) -> list[Image.Image]:
return [ImageChops.invert(m) for m in masks]
def mask_merge_invert(
masks: list[Image.Image], mode: int | MergeInvert | str
) -> list[Image.Image]:
if isinstance(mode, str):
mode = MASK_MERGE_INVERT.index(mode)
if mode == MergeInvert.NONE or not masks:
return masks
if mode == MergeInvert.MERGE:
return mask_merge(masks)
if mode == MergeInvert.MERGE_INVERT:
merged = mask_merge(masks)
return mask_invert(merged)
raise RuntimeError
|