adt2 / adetailer /ui.py
ddoc's picture
Upload 36 files
187d856
from __future__ import annotations
from functools import partial
from types import SimpleNamespace
from typing import Any
import gradio as gr
from adetailer import AFTER_DETAILER, __version__
from adetailer.args import AD_ENABLE, ALL_ARGS, MASK_MERGE_INVERT
from controlnet_ext import controlnet_exists, get_cn_models
cn_module_choices = [
"inpaint_global_harmonious",
"inpaint_only",
"inpaint_only+lama",
]
class Widgets(SimpleNamespace):
def tolist(self):
return [getattr(self, attr) for attr in ALL_ARGS.attrs]
def gr_interactive(value: bool = True):
return gr.update(interactive=value)
def ordinal(n: int) -> str:
d = {1: "st", 2: "nd", 3: "rd"}
return str(n) + ("th" if 11 <= n % 100 <= 13 else d.get(n % 10, "th"))
def suffix(n: int, c: str = " ") -> str:
return "" if n == 0 else c + ordinal(n + 1)
def on_widget_change(state: dict, value: Any, *, attr: str):
state[attr] = value
return state
def on_generate_click(state: dict, *values: Any):
for attr, value in zip(ALL_ARGS.attrs, values):
state[attr] = value
state["is_api"] = ()
return state
def on_cn_model_update(cn_model: str):
if "inpaint" in cn_model:
return gr.update(
visible=True, choices=cn_module_choices, value=cn_module_choices[0]
)
return gr.update(visible=False, choices=["None"], value="None")
def elem_id(item_id: str, n: int, is_img2img: bool) -> str:
tap = "img2img" if is_img2img else "txt2img"
suf = suffix(n, "_")
return f"script_{tap}_adetailer_{item_id}{suf}"
def adui(
num_models: int,
is_img2img: bool,
model_list: list[str],
samplers: list[str],
t2i_button: gr.Button,
i2i_button: gr.Button,
):
states = []
infotext_fields = []
eid = partial(elem_id, n=0, is_img2img=is_img2img)
with gr.Accordion(AFTER_DETAILER, open=False, elem_id=eid("ad_main_accordion")):
with gr.Row():
with gr.Column(scale=6):
ad_enable = gr.Checkbox(
label="Enable ADetailer",
value=False,
visible=True,
elem_id=eid("ad_enable"),
)
with gr.Column(scale=1, min_width=180):
gr.Markdown(
f"v{__version__}",
elem_id=eid("ad_version"),
)
infotext_fields.append((ad_enable, AD_ENABLE.name))
with gr.Group(), gr.Tabs():
for n in range(num_models):
with gr.Tab(ordinal(n + 1)):
state, infofields = one_ui_group(
n=n,
is_img2img=is_img2img,
model_list=model_list,
samplers=samplers,
t2i_button=t2i_button,
i2i_button=i2i_button,
)
states.append(state)
infotext_fields.extend(infofields)
# components: [bool, dict, dict, ...]
components = [ad_enable, *states]
return components, infotext_fields
def one_ui_group(
n: int,
is_img2img: bool,
model_list: list[str],
samplers: list[str],
t2i_button: gr.Button,
i2i_button: gr.Button,
):
w = Widgets()
state = gr.State({})
eid = partial(elem_id, n=n, is_img2img=is_img2img)
with gr.Row():
model_choices = [*model_list, "None"] if n == 0 else ["None", *model_list]
w.ad_model = gr.Dropdown(
label="ADetailer model" + suffix(n),
choices=model_choices,
value=model_choices[0],
visible=True,
type="value",
elem_id=eid("ad_model"),
)
with gr.Group():
with gr.Row(elem_id=eid("ad_toprow_prompt")):
w.ad_prompt = gr.Textbox(
label="ad_prompt" + suffix(n),
show_label=False,
lines=3,
placeholder="ADetailer prompt"
+ suffix(n)
+ "\nIf blank, the main prompt is used.",
elem_id=eid("ad_prompt"),
)
with gr.Row(elem_id=eid("ad_toprow_negative_prompt")):
w.ad_negative_prompt = gr.Textbox(
label="ad_negative_prompt" + suffix(n),
show_label=False,
lines=2,
placeholder="ADetailer negative prompt"
+ suffix(n)
+ "\nIf blank, the main negative prompt is used.",
elem_id=eid("ad_negative_prompt"),
)
with gr.Group():
with gr.Accordion(
"Detection", open=False, elem_id=eid("ad_detection_accordion")
):
detection(w, n, is_img2img)
with gr.Accordion(
"Mask Preprocessing",
open=False,
elem_id=eid("ad_mask_preprocessing_accordion"),
):
mask_preprocessing(w, n, is_img2img)
with gr.Accordion(
"Inpainting", open=False, elem_id=eid("ad_inpainting_accordion")
):
inpainting(w, n, is_img2img, samplers)
with gr.Group():
controlnet(w, n, is_img2img)
all_inputs = [state, *w.tolist()]
target_button = i2i_button if is_img2img else t2i_button
target_button.click(
fn=on_generate_click, inputs=all_inputs, outputs=state, queue=False
)
infotext_fields = [(getattr(w, attr), name + suffix(n)) for attr, name in ALL_ARGS]
return state, infotext_fields
def detection(w: Widgets, n: int, is_img2img: bool):
eid = partial(elem_id, n=n, is_img2img=is_img2img)
with gr.Row():
with gr.Column(variant="compact"):
w.ad_confidence = gr.Slider(
label="Detection model confidence threshold" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.3,
visible=True,
elem_id=eid("ad_confidence"),
)
w.ad_mask_k_largest = gr.Slider(
label="Mask only the top k largest (0 to disable)" + suffix(n),
minumum=0,
maximum=5,
step=1,
value=0,
visible=True,
elem_id=eid("ad_mask_k_largest")
)
with gr.Column(variant="compact"):
w.ad_mask_min_ratio = gr.Slider(
label="Mask min area ratio" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.001,
value=0.0,
visible=True,
elem_id=eid("ad_mask_min_ratio"),
)
w.ad_mask_max_ratio = gr.Slider(
label="Mask max area ratio" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.001,
value=1.0,
visible=True,
elem_id=eid("ad_mask_max_ratio"),
)
def mask_preprocessing(w: Widgets, n: int, is_img2img: bool):
eid = partial(elem_id, n=n, is_img2img=is_img2img)
with gr.Group():
with gr.Row():
with gr.Column(variant="compact"):
w.ad_x_offset = gr.Slider(
label="Mask x(→) offset" + suffix(n),
minimum=-200,
maximum=200,
step=1,
value=0,
visible=True,
elem_id=eid("ad_x_offset"),
)
w.ad_y_offset = gr.Slider(
label="Mask y(↑) offset" + suffix(n),
minimum=-200,
maximum=200,
step=1,
value=0,
visible=True,
elem_id=eid("ad_y_offset"),
)
with gr.Column(variant="compact"):
w.ad_dilate_erode = gr.Slider(
label="Mask erosion (-) / dilation (+)" + suffix(n),
minimum=-128,
maximum=128,
step=4,
value=4,
visible=True,
elem_id=eid("ad_dilate_erode"),
)
with gr.Row():
w.ad_mask_merge_invert = gr.Radio(
label="Mask merge mode" + suffix(n),
choices=MASK_MERGE_INVERT,
value="None",
elem_id=eid("ad_mask_merge_invert"),
)
def inpainting(w: Widgets, n: int, is_img2img: bool, samplers: list[str]):
eid = partial(elem_id, n=n, is_img2img=is_img2img)
with gr.Group():
with gr.Row():
w.ad_mask_blur = gr.Slider(
label="Inpaint mask blur" + suffix(n),
minimum=0,
maximum=64,
step=1,
value=4,
visible=True,
elem_id=eid("ad_mask_blur"),
)
w.ad_denoising_strength = gr.Slider(
label="Inpaint denoising strength" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.4,
visible=True,
elem_id=eid("ad_denoising_strength"),
)
with gr.Row():
with gr.Column(variant="compact"):
w.ad_inpaint_only_masked = gr.Checkbox(
label="Inpaint only masked" + suffix(n),
value=True,
visible=True,
elem_id=eid("ad_inpaint_only_masked"),
)
w.ad_inpaint_only_masked_padding = gr.Slider(
label="Inpaint only masked padding, pixels" + suffix(n),
minimum=0,
maximum=256,
step=4,
value=32,
visible=True,
elem_id=eid("ad_inpaint_only_masked_padding"),
)
w.ad_inpaint_only_masked.change(
gr_interactive,
inputs=w.ad_inpaint_only_masked,
outputs=w.ad_inpaint_only_masked_padding,
queue=False,
)
with gr.Column(variant="compact"):
w.ad_use_inpaint_width_height = gr.Checkbox(
label="Use separate width/height" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_inpaint_width_height"),
)
w.ad_inpaint_width = gr.Slider(
label="inpaint width" + suffix(n),
minimum=64,
maximum=2048,
step=4,
value=512,
visible=True,
elem_id=eid("ad_inpaint_width"),
)
w.ad_inpaint_height = gr.Slider(
label="inpaint height" + suffix(n),
minimum=64,
maximum=2048,
step=4,
value=512,
visible=True,
elem_id=eid("ad_inpaint_height"),
)
w.ad_use_inpaint_width_height.change(
lambda value: (gr_interactive(value), gr_interactive(value)),
inputs=w.ad_use_inpaint_width_height,
outputs=[w.ad_inpaint_width, w.ad_inpaint_height],
queue=False,
)
with gr.Row():
with gr.Column(variant="compact"):
w.ad_use_steps = gr.Checkbox(
label="Use separate steps" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_steps"),
)
w.ad_steps = gr.Slider(
label="ADetailer steps" + suffix(n),
minimum=1,
maximum=150,
step=1,
value=28,
visible=True,
elem_id=eid("ad_steps"),
)
w.ad_use_steps.change(
gr_interactive,
inputs=w.ad_use_steps,
outputs=w.ad_steps,
queue=False,
)
with gr.Column(variant="compact"):
w.ad_use_cfg_scale = gr.Checkbox(
label="Use separate CFG scale" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_cfg_scale"),
)
w.ad_cfg_scale = gr.Slider(
label="ADetailer CFG scale" + suffix(n),
minimum=0.0,
maximum=30.0,
step=0.5,
value=7.0,
visible=True,
elem_id=eid("ad_cfg_scale"),
)
w.ad_use_cfg_scale.change(
gr_interactive,
inputs=w.ad_use_cfg_scale,
outputs=w.ad_cfg_scale,
queue=False,
)
with gr.Row():
with gr.Column(variant="compact"):
w.ad_use_sampler = gr.Checkbox(
label="Use separate sampler" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_sampler"),
)
w.ad_sampler = gr.Dropdown(
label="ADetailer sampler" + suffix(n),
choices=samplers,
value=samplers[0],
visible=True,
elem_id=eid("ad_sampler"),
)
w.ad_use_sampler.change(
gr_interactive,
inputs=w.ad_use_sampler,
outputs=w.ad_sampler,
queue=False,
)
with gr.Column(variant="compact"):
w.ad_use_noise_multiplier = gr.Checkbox(
label="Use separate noise multiplier" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_noise_multiplier"),
)
w.ad_noise_multiplier = gr.Slider(
label="Noise multiplier for img2img" + suffix(n),
minimum=0.5,
maximum=1.5,
step=0.01,
value=1.0,
visible=True,
elem_id=eid("ad_noise_multiplier"),
)
w.ad_use_noise_multiplier.change(
gr_interactive,
inputs=w.ad_use_noise_multiplier,
outputs=w.ad_noise_multiplier,
queue=False,
)
with gr.Row():
with gr.Column(variant="compact"):
w.ad_use_clip_skip = gr.Checkbox(
label="Use separate CLIP skip" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_clip_skip"),
)
w.ad_clip_skip = gr.Slider(
label="ADetailer CLIP skip" + suffix(n),
minimum=1,
maximum=12,
step=1,
value=1,
visible=True,
elem_id=eid("ad_clip_skip"),
)
w.ad_use_clip_skip.change(
gr_interactive,
inputs=w.ad_use_clip_skip,
outputs=w.ad_clip_skip,
queue=False,
)
with gr.Column(variant="compact"):
w.ad_restore_face = gr.Checkbox(
label="Restore faces after ADetailer" + suffix(n),
value=False,
elem_id=eid("ad_restore_face"),
)
def controlnet(w: Widgets, n: int, is_img2img: bool):
eid = partial(elem_id, n=n, is_img2img=is_img2img)
cn_models = ["None", *get_cn_models()]
with gr.Row(variant="panel"):
with gr.Column(variant="compact"):
w.ad_controlnet_model = gr.Dropdown(
label="ControlNet model" + suffix(n),
choices=cn_models,
value="None",
visible=True,
type="value",
interactive=controlnet_exists,
elem_id=eid("ad_controlnet_model"),
)
w.ad_controlnet_module = gr.Dropdown(
label="ControlNet module" + suffix(n),
choices=cn_module_choices,
value="inpaint_global_harmonious",
visible=False,
type="value",
interactive=controlnet_exists,
elem_id=eid("ad_controlnet_module"),
)
w.ad_controlnet_weight = gr.Slider(
label="ControlNet weight" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
visible=True,
interactive=controlnet_exists,
elem_id=eid("ad_controlnet_weight"),
)
w.ad_controlnet_model.change(
on_cn_model_update,
inputs=w.ad_controlnet_model,
outputs=w.ad_controlnet_module,
queue=False,
)
with gr.Column(variant="compact"):
w.ad_controlnet_guidance_start = gr.Slider(
label="ControlNet guidance start" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0,
visible=True,
interactive=controlnet_exists,
elem_id=eid("ad_controlnet_guidance_start"),
)
w.ad_controlnet_guidance_end = gr.Slider(
label="ControlNet guidance end" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
visible=True,
interactive=controlnet_exists,
elem_id=eid("ad_controlnet_guidance_end"),
)