""" Caffe2 validation script This script is created to verify exported ONNX models running in Caffe2 It utilizes the same PyTorch dataloader/processing pipeline for a fair comparison against the originals. Copyright 2020 Ross Wightman """ import argparse import numpy as np from caffe2.python import core, workspace, model_helper from caffe2.proto import caffe2_pb2 from data import create_loader, resolve_data_config, Dataset from utils import AverageMeter import time parser = argparse.ArgumentParser(description='Caffe2 ImageNet Validation') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME', help='caffe2 model pb name prefix') parser.add_argument('--c2-init', default='', type=str, metavar='PATH', help='caffe2 model init .pb') parser.add_argument('--c2-predict', default='', type=str, metavar='PATH', help='caffe2 model predict .pb') parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', help='number of data loading workers (default: 2)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', help='Override default crop pct of 0.875') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true', help='use tensorflow mnasnet preporcessing') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') def main(): args = parser.parse_args() args.gpu_id = 0 if args.c2_prefix: args.c2_init = args.c2_prefix + '.init.pb' args.c2_predict = args.c2_prefix + '.predict.pb' model = model_helper.ModelHelper(name="validation_net", init_params=False) # Bring in the init net from init_net.pb init_net_proto = caffe2_pb2.NetDef() with open(args.c2_init, "rb") as f: init_net_proto.ParseFromString(f.read()) model.param_init_net = core.Net(init_net_proto) # bring in the predict net from predict_net.pb predict_net_proto = caffe2_pb2.NetDef() with open(args.c2_predict, "rb") as f: predict_net_proto.ParseFromString(f.read()) model.net = core.Net(predict_net_proto) data_config = resolve_data_config(None, args) loader = create_loader( Dataset(args.data, load_bytes=args.tf_preprocessing), input_size=data_config['input_size'], batch_size=args.batch_size, use_prefetcher=False, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=data_config['crop_pct'], tensorflow_preprocessing=args.tf_preprocessing) # this is so obvious, wonderful interface input_blob = model.net.external_inputs[0] output_blob = model.net.external_outputs[0] if True: device_opts = None else: # CUDA is crashing, no idea why, awesome error message, give it a try for kicks device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id) model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True) model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True) model.param_init_net.GaussianFill( [], input_blob.GetUnscopedName(), shape=(1,) + data_config['input_size'], mean=0.0, std=1.0) workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net, overwrite=True) batch_time = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() end = time.time() for i, (input, target) in enumerate(loader): # run the net and return prediction caffe2_in = input.data.numpy() workspace.FeedBlob(input_blob, caffe2_in, device_opts) workspace.RunNet(model.net, num_iter=1) output = workspace.FetchBlob(output_blob) # measure accuracy and record loss prec1, prec5 = accuracy_np(output.data, target.numpy()) top1.update(prec1.item(), input.size(0)) top5.update(prec5.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s, {ms_avg:.3f} ms/sample) \t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg, ms_avg=100 * batch_time.avg / input.size(0), top1=top1, top5=top5)) print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format( top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg)) def accuracy_np(output, target): max_indices = np.argsort(output, axis=1)[:, ::-1] top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean() top1 = 100 * np.equal(max_indices[:, 0], target).mean() return top1, top5 if __name__ == '__main__': main()