ddoc's picture
Upload 934 files
67e6429
""" Caffe2 validation script
This script is created to verify exported ONNX models running in Caffe2
It utilizes the same PyTorch dataloader/processing pipeline for a
fair comparison against the originals.
Copyright 2020 Ross Wightman
"""
import argparse
import numpy as np
from caffe2.python import core, workspace, model_helper
from caffe2.proto import caffe2_pb2
from data import create_loader, resolve_data_config, Dataset
from utils import AverageMeter
import time
parser = argparse.ArgumentParser(description='Caffe2 ImageNet Validation')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME',
help='caffe2 model pb name prefix')
parser.add_argument('--c2-init', default='', type=str, metavar='PATH',
help='caffe2 model init .pb')
parser.add_argument('--c2-predict', default='', type=str, metavar='PATH',
help='caffe2 model predict .pb')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT',
help='Override default crop pct of 0.875')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true',
help='use tensorflow mnasnet preporcessing')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
def main():
args = parser.parse_args()
args.gpu_id = 0
if args.c2_prefix:
args.c2_init = args.c2_prefix + '.init.pb'
args.c2_predict = args.c2_prefix + '.predict.pb'
model = model_helper.ModelHelper(name="validation_net", init_params=False)
# Bring in the init net from init_net.pb
init_net_proto = caffe2_pb2.NetDef()
with open(args.c2_init, "rb") as f:
init_net_proto.ParseFromString(f.read())
model.param_init_net = core.Net(init_net_proto)
# bring in the predict net from predict_net.pb
predict_net_proto = caffe2_pb2.NetDef()
with open(args.c2_predict, "rb") as f:
predict_net_proto.ParseFromString(f.read())
model.net = core.Net(predict_net_proto)
data_config = resolve_data_config(None, args)
loader = create_loader(
Dataset(args.data, load_bytes=args.tf_preprocessing),
input_size=data_config['input_size'],
batch_size=args.batch_size,
use_prefetcher=False,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers,
crop_pct=data_config['crop_pct'],
tensorflow_preprocessing=args.tf_preprocessing)
# this is so obvious, wonderful interface </sarcasm>
input_blob = model.net.external_inputs[0]
output_blob = model.net.external_outputs[0]
if True:
device_opts = None
else:
# CUDA is crashing, no idea why, awesome error message, give it a try for kicks
device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
model.param_init_net.GaussianFill(
[], input_blob.GetUnscopedName(),
shape=(1,) + data_config['input_size'], mean=0.0, std=1.0)
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net, overwrite=True)
batch_time = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
for i, (input, target) in enumerate(loader):
# run the net and return prediction
caffe2_in = input.data.numpy()
workspace.FeedBlob(input_blob, caffe2_in, device_opts)
workspace.RunNet(model.net, num_iter=1)
output = workspace.FetchBlob(output_blob)
# measure accuracy and record loss
prec1, prec5 = accuracy_np(output.data, target.numpy())
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s, {ms_avg:.3f} ms/sample) \t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg,
ms_avg=100 * batch_time.avg / input.size(0), top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format(
top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg))
def accuracy_np(output, target):
max_indices = np.argsort(output, axis=1)[:, ::-1]
top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean()
top1 = 100 * np.equal(max_indices[:, 0], target).mean()
return top1, top5
if __name__ == '__main__':
main()