# Copyright (C) 2023 Deforum LLC # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, version 3 of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see . # Contact the authors: https://deforum.github.io/ import torch import numpy as np from PIL import Image import torchvision.transforms.functional as TF from .general_utils import download_file_with_checksum from infer import InferenceHelper class AdaBinsModel: _instance = None def __new__(cls, *args, **kwargs): keep_in_vram = kwargs.get('keep_in_vram', False) if cls._instance is None: cls._instance = super().__new__(cls) cls._instance._initialize(*args, keep_in_vram=keep_in_vram) return cls._instance def _initialize(self, models_path, keep_in_vram=False): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.keep_in_vram = keep_in_vram self.adabins_helper = None download_file_with_checksum(url='https://github.com/hithereai/deforum-for-automatic1111-webui/releases/download/AdaBins/AdaBins_nyu.pt', expected_checksum='643db9785c663aca72f66739427642726b03acc6c4c1d3755a4587aa2239962746410d63722d87b49fc73581dbc98ed8e3f7e996ff7b9c0d56d0fbc98e23e41a', dest_folder=models_path, dest_filename='AdaBins_nyu.pt') self.adabins_helper = InferenceHelper(models_path=models_path, dataset='nyu', device=self.device) def predict(self, img_pil, prev_img_cv2): w, h = prev_img_cv2.shape[1], prev_img_cv2.shape[0] adabins_depth = np.array([]) use_adabins = True MAX_ADABINS_AREA, MIN_ADABINS_AREA = 500000, 448 * 448 image_pil_area, resized = w * h, False if image_pil_area not in range(MIN_ADABINS_AREA, MAX_ADABINS_AREA + 1): scale = ((MAX_ADABINS_AREA if image_pil_area > MAX_ADABINS_AREA else MIN_ADABINS_AREA) / image_pil_area) ** 0.5 depth_input = img_pil.resize((int(w * scale), int(h * scale)), Image.LANCZOS if image_pil_area > MAX_ADABINS_AREA else Image.BICUBIC) print(f"AdaBins depth resized to {depth_input.width}x{depth_input.height}") resized = True else: depth_input = img_pil try: with torch.no_grad(): _, adabins_depth = self.adabins_helper.predict_pil(depth_input) if resized: adabins_depth = TF.resize(torch.from_numpy(adabins_depth), torch.Size([h, w]), interpolation=TF.InterpolationMode.BICUBIC).cpu().numpy() adabins_depth = adabins_depth.squeeze() except Exception as e: print("AdaBins exception encountered. Falling back to pure MiDaS/Zoe (only if running in Legacy Midas/Zoe+AdaBins mode)") use_adabins = False torch.cuda.empty_cache() return use_adabins, adabins_depth def to(self, device): self.device = device if self.adabins_helper is not None: self.adabins_helper.to(device) def delete_model(self): del self.adabins_helper