File size: 2,095 Bytes
1c10f58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
tags:
- generated_from_keras_callback
model-index:
- name: ASL_t5_movinet
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ASL_t5_movinet
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.5272
- Train Top 1: 0.8966
- Train Top 5: 0.9383
- Validation Loss: 0.7459
- Validation Top 1: 0.8710
- Validation Top 5: 0.9142
- Train Bleu: 0.0
- Train Gen Len: 2.0
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': True}
- training_precision: float32
### Training results
| Train Loss | Train Top 1 | Train Top 5 | Validation Loss | Validation Top 1 | Validation Top 5 | Train Bleu | Train Gen Len | Epoch |
|:----------:|:-----------:|:-----------:|:---------------:|:----------------:|:----------------:|:----------:|:-------------:|:-----:|
| 0.5971 | 0.8879 | 0.9305 | 0.7228 | 0.8744 | 0.9170 | 0.0 | 2.0 | 0 |
| 0.5567 | 0.8928 | 0.9353 | 0.7311 | 0.8736 | 0.9156 | 0.0 | 2.0 | 1 |
| 0.5272 | 0.8966 | 0.9383 | 0.7459 | 0.8710 | 0.9142 | 0.0 | 2.0 | 2 |
### Framework versions
- Transformers 4.34.1
- TensorFlow 2.13.0
- Datasets 2.15.0
- Tokenizers 0.14.1
|