dearxoasis commited on
Commit
31fc014
·
1 Parent(s): bff2abb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: ASR_dear_wav2vec2-thai
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # ASR_dear_wav2vec2-thai
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3364
20
+ - Wer: 0.3909
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0001
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 1000
46
+ - num_epochs: 20
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
53
+ | 7.4289 | 0.75 | 1000 | 3.5725 | 1.0000 |
54
+ | 2.2677 | 1.5 | 2000 | 0.7469 | 0.7886 |
55
+ | 0.9445 | 2.24 | 3000 | 0.5423 | 0.6379 |
56
+ | 0.7801 | 2.99 | 4000 | 0.4628 | 0.5895 |
57
+ | 0.6797 | 3.74 | 5000 | 0.4386 | 0.5518 |
58
+ | 0.6187 | 4.49 | 6000 | 0.4137 | 0.5274 |
59
+ | 0.5702 | 5.24 | 7000 | 0.3906 | 0.4903 |
60
+ | 0.5383 | 5.98 | 8000 | 0.3679 | 0.4824 |
61
+ | 0.5059 | 6.73 | 9000 | 0.3627 | 0.4583 |
62
+ | 0.4829 | 7.48 | 10000 | 0.3523 | 0.4535 |
63
+ | 0.4588 | 8.23 | 11000 | 0.3512 | 0.4560 |
64
+ | 0.4381 | 8.98 | 12000 | 0.3442 | 0.4450 |
65
+ | 0.4127 | 9.72 | 13000 | 0.3446 | 0.4358 |
66
+ | 0.4021 | 10.47 | 14000 | 0.3430 | 0.4239 |
67
+ | 0.3866 | 11.22 | 15000 | 0.3357 | 0.4156 |
68
+ | 0.3729 | 11.97 | 16000 | 0.3436 | 0.4127 |
69
+ | 0.3537 | 12.72 | 17000 | 0.3387 | 0.4117 |
70
+ | 0.3483 | 13.46 | 18000 | 0.3344 | 0.4090 |
71
+ | 0.3384 | 14.21 | 19000 | 0.3365 | 0.4001 |
72
+ | 0.3294 | 14.96 | 20000 | 0.3336 | 0.3991 |
73
+ | 0.3218 | 15.71 | 21000 | 0.3401 | 0.4002 |
74
+ | 0.3113 | 16.45 | 22000 | 0.3432 | 0.3976 |
75
+ | 0.3054 | 17.2 | 23000 | 0.3302 | 0.3959 |
76
+ | 0.2976 | 17.95 | 24000 | 0.3358 | 0.3936 |
77
+ | 0.2955 | 18.7 | 25000 | 0.3340 | 0.3930 |
78
+ | 0.2913 | 19.45 | 26000 | 0.3364 | 0.3909 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.26.1
84
+ - Pytorch 1.13.1+cu116
85
+ - Datasets 2.10.1
86
+ - Tokenizers 0.13.2