debbiesoon commited on
Commit
0ccd40c
·
1 Parent(s): e698f2a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - scientific_papers
7
+ model-index:
8
+ - name: summarise_v3
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # summarise_v3
16
+
17
+ This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the scientific_papers dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.3003
20
+ - Rouge2 Precision: 0.1654
21
+ - Rouge2 Recall: 0.0966
22
+ - Rouge2 Fmeasure: 0.1118
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 2
43
+ - eval_batch_size: 2
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 1
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
53
+ |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
54
+ | 2.909 | 0.08 | 10 | 2.8968 | 0.0887 | 0.143 | 0.0945 |
55
+ | 2.6151 | 0.16 | 20 | 2.6183 | 0.1205 | 0.0854 | 0.0907 |
56
+ | 2.5809 | 0.24 | 30 | 2.4685 | 0.1371 | 0.0748 | 0.0911 |
57
+ | 2.1297 | 0.32 | 40 | 2.5209 | 0.1481 | 0.092 | 0.1029 |
58
+ | 2.8083 | 0.4 | 50 | 2.3871 | 0.1785 | 0.1047 | 0.1217 |
59
+ | 3.0703 | 0.48 | 60 | 2.3674 | 0.1576 | 0.0985 | 0.1103 |
60
+ | 2.4715 | 0.56 | 70 | 2.3555 | 0.1703 | 0.1036 | 0.1194 |
61
+ | 2.4538 | 0.64 | 80 | 2.3411 | 0.1619 | 0.0935 | 0.1108 |
62
+ | 2.3046 | 0.72 | 90 | 2.3105 | 0.152 | 0.0975 | 0.1107 |
63
+ | 1.7466 | 0.8 | 100 | 2.3416 | 0.1534 | 0.0872 | 0.1038 |
64
+ | 2.7695 | 0.88 | 110 | 2.3227 | 0.154 | 0.095 | 0.1081 |
65
+ | 2.4999 | 0.96 | 120 | 2.3003 | 0.1654 | 0.0966 | 0.1118 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.21.3
71
+ - Pytorch 1.12.1+cu113
72
+ - Datasets 1.2.1
73
+ - Tokenizers 0.12.1