|
"""Attention layers.""" |
|
import math |
|
import warnings |
|
from typing import Any, List, Optional, Tuple |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from packaging import version |
|
from torch import nn |
|
from .fc import FC_CLASS_REGISTRY |
|
from .norm import NORM_CLASS_REGISTRY |
|
|
|
def is_flash_v2_installed(): |
|
try: |
|
import flash_attn as flash_attn |
|
except: |
|
return False |
|
return version.parse(flash_attn.__version__) >= version.parse('2.0.0') |
|
|
|
def is_flash_v1_installed(): |
|
try: |
|
import flash_attn as flash_attn |
|
except: |
|
return False |
|
return version.parse(flash_attn.__version__) < version.parse('2.0.0') |
|
|
|
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool: |
|
if original_is_causal and num_query_tokens != num_key_tokens: |
|
if num_query_tokens != 1: |
|
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.') |
|
else: |
|
return False |
|
return original_is_causal |
|
|
|
def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
"""Perform repeat of kv heads along a particular dimension. |
|
|
|
hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim) |
|
n_rep: amount of repetitions of kv_n_heads |
|
Unlike torch.repeat_interleave, this function avoids allocating new memory. |
|
""" |
|
if n_rep == 1: |
|
return hidden |
|
(b, s, kv_n_heads, d) = hidden.shape |
|
hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d) |
|
return hidden.reshape(b, s, kv_n_heads * n_rep, d) |
|
|
|
def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
if multiquery: |
|
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.')) |
|
kv_n_heads = 1 |
|
elif kv_n_heads is None: |
|
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.')) |
|
kv_n_heads = n_heads |
|
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) |
|
k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads) |
|
v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads) |
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
k = torch.cat([past_key_value[0], k], dim=3) |
|
v = torch.cat([past_key_value[1], v], dim=2) |
|
past_key_value = (k, v) |
|
(b, _, s_q, d) = q.shape |
|
s_k = k.size(-1) |
|
if kv_n_heads > 1 and kv_n_heads < n_heads: |
|
k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2) |
|
v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2) |
|
if softmax_scale is None: |
|
softmax_scale = 1 / math.sqrt(d) |
|
attn_weight = q.matmul(k) * softmax_scale |
|
if attn_bias is not None: |
|
_s_q = max(0, attn_bias.size(2) - s_q) |
|
_s_k = max(0, attn_bias.size(3) - s_k) |
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:] |
|
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q): |
|
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.') |
|
attn_weight = attn_weight + attn_bias |
|
min_val = torch.finfo(q.dtype).min |
|
if key_padding_mask is not None: |
|
if attn_bias is not None: |
|
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.') |
|
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val) |
|
if is_causal and (not q.size(2) == 1): |
|
s = max(s_q, s_k) |
|
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32) |
|
causal_mask = causal_mask.tril() |
|
causal_mask = causal_mask.to(torch.bool) |
|
causal_mask = ~causal_mask |
|
causal_mask = causal_mask[-s_q:, -s_k:] |
|
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) |
|
attn_weight = torch.softmax(attn_weight, dim=-1) |
|
if dropout_p: |
|
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True) |
|
out = attn_weight.to(v.dtype).matmul(v) |
|
out = rearrange(out, 'b h s d -> b s (h d)') |
|
if needs_weights: |
|
return (out, attn_weight, past_key_value) |
|
return (out, None, past_key_value) |
|
|
|
def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[List[torch.dtype]]=None): |
|
if valid_dtypes is None: |
|
valid_dtypes = [torch.float16, torch.bfloat16] |
|
for tensor in tensors: |
|
if tensor.dtype not in valid_dtypes: |
|
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.') |
|
if not tensor.is_cuda: |
|
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).') |
|
|
|
def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
try: |
|
from flash_attn import bert_padding, flash_attn_interface |
|
except: |
|
raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.2') |
|
check_valid_inputs(query, key, value) |
|
if multiquery: |
|
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.')) |
|
kv_n_heads = 1 |
|
elif kv_n_heads is None: |
|
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.')) |
|
kv_n_heads = n_heads |
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
key = torch.cat([past_key_value[0], key], dim=1) |
|
value = torch.cat([past_key_value[1], value], dim=1) |
|
past_key_value = (key, value) |
|
if attn_bias is not None: |
|
_s_q = max(0, attn_bias.size(2) - query.size(1)) |
|
_s_k = max(0, attn_bias.size(3) - key.size(1)) |
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:] |
|
if attn_bias is not None: |
|
raise NotImplementedError(f'attn_bias not implemented for flash attn.') |
|
(batch_size, seqlen) = query.shape[:2] |
|
if key_padding_mask is None: |
|
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool) |
|
query_padding_mask = key_padding_mask[:, -query.size(1):] |
|
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask) |
|
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads) |
|
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask) |
|
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads) |
|
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask) |
|
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads) |
|
if kv_n_heads == 1: |
|
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) |
|
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1)) |
|
elif kv_n_heads < n_heads: |
|
key_unpad = repeat_kv_for_gqa(key_unpad.view(batch_size, seqlen, kv_n_heads, -1), n_heads // kv_n_heads).view(batch_size * seqlen, n_heads, -1) |
|
value_unpad = repeat_kv_for_gqa(value_unpad.view(batch_size, seqlen, kv_n_heads, -1), n_heads // kv_n_heads).view(batch_size * seqlen, n_heads, -1) |
|
dropout_p = dropout_p if training else 0.0 |
|
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) |
|
if is_flash_v1_installed(): |
|
output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights) |
|
elif is_flash_v2_installed(): |
|
output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights) |
|
else: |
|
raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.3.2 is required.') |
|
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen) |
|
return (output, None, past_key_value) |
|
|
|
def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
try: |
|
from .flash_attn_triton import flash_attn_func |
|
except: |
|
_installed = False |
|
if version.parse(torch.__version__) < version.parse('2.0.0'): |
|
_installed = True |
|
try: |
|
from flash_attn.flash_attn_triton import flash_attn_func |
|
except: |
|
_installed = False |
|
if not _installed: |
|
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.') |
|
check_valid_inputs(query, key, value) |
|
if multiquery: |
|
warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.')) |
|
kv_n_heads = 1 |
|
elif kv_n_heads is None: |
|
warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.')) |
|
kv_n_heads = n_heads |
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
key = torch.cat([past_key_value[0], key], dim=1) |
|
value = torch.cat([past_key_value[1], value], dim=1) |
|
past_key_value = (key, value) |
|
if attn_bias is not None: |
|
_s_q = max(0, attn_bias.size(2) - query.size(1)) |
|
_s_k = max(0, attn_bias.size(3) - key.size(1)) |
|
attn_bias = attn_bias[:, :, _s_q:, _s_k:] |
|
if dropout_p: |
|
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.') |
|
dropout_p = dropout_p if training else 0.0 |
|
if needs_weights: |
|
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.') |
|
if key_padding_mask is not None: |
|
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.') |
|
(b_size, s_k) = key_padding_mask.shape[:2] |
|
if attn_bias is None: |
|
attn_bias = query.new_zeros(b_size, 1, 1, s_k) |
|
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min) |
|
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads) |
|
key = rearrange(key, 'b s (h d) -> b s h d', h=kv_n_heads) |
|
value = rearrange(value, 'b s (h d) -> b s h d', h=kv_n_heads) |
|
if kv_n_heads == 1: |
|
key = key.repeat(1, 1, n_heads, 1) |
|
value = value.repeat(1, 1, n_heads, 1) |
|
elif kv_n_heads < n_heads: |
|
key = repeat_kv_for_gqa(key, n_heads // kv_n_heads) |
|
value = repeat_kv_for_gqa(value, n_heads // kv_n_heads) |
|
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) |
|
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale) |
|
output = attn_output.view(*attn_output.shape[:2], -1) |
|
return (output, None, past_key_value) |
|
|
|
class GroupedQueryAttention(nn.Module): |
|
"""Grouped Query Attention (GQA) is a generalization of Multi-head (MHA). |
|
|
|
and Multi-query attention (MQA). |
|
|
|
This allows the user to set a variable of number of kv_n_heads, rather than |
|
just n_heads or 1, as in MHA and MQA. Using torch or triton attention |
|
implementation enables user to also use additive bias. |
|
""" |
|
|
|
def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True): |
|
super().__init__() |
|
self.attn_impl = attn_impl |
|
self.clip_qkv = clip_qkv |
|
self.qk_ln = qk_ln |
|
self.d_model = d_model |
|
self.n_heads = n_heads |
|
self.kv_n_heads = kv_n_heads |
|
self.head_dim = d_model // n_heads |
|
if self.kv_n_heads <= 0: |
|
raise ValueError('kv_n_heads should be greater than zero.') |
|
if self.kv_n_heads > self.n_heads: |
|
raise ValueError('The number of KV heads should be less than or equal to Q heads.') |
|
if self.n_heads % self.kv_n_heads != 0: |
|
raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.') |
|
self.softmax_scale = softmax_scale |
|
if self.softmax_scale is None: |
|
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) |
|
self.attn_dropout_p = attn_pdrop |
|
fc_kwargs: dict[str, Any] = {'bias': bias} |
|
if fc_type != 'te': |
|
fc_kwargs['device'] = device |
|
self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs) |
|
fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)] |
|
self.Wqkv._fused = (0, fuse_splits) |
|
if self.qk_ln: |
|
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()] |
|
self.q_ln = norm_class(self.d_model, device=device) |
|
self.k_ln = norm_class(self.kv_n_heads * self.head_dim, device=device) |
|
if self.attn_impl == 'flash': |
|
self.attn_fn = flash_attn_fn |
|
elif self.attn_impl == 'triton': |
|
self.attn_fn = triton_flash_attn_fn |
|
elif self.attn_impl == 'torch': |
|
self.attn_fn = scaled_multihead_dot_product_attention |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs) |
|
self.out_proj._is_residual = True |
|
|
|
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, is_causal: bool=True, output_attentions: bool=False, needs_weights: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
qkv = self.Wqkv(x) |
|
if self.clip_qkv: |
|
qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv) |
|
(query, key, value) = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2) |
|
key_padding_mask = attention_mask |
|
if self.qk_ln: |
|
dtype = query.dtype |
|
query = self.q_ln(query).to(dtype) |
|
key = self.k_ln(key).to(dtype) |
|
(context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights) |
|
return (self.out_proj(context), attn_weights, past_key_value) |
|
|
|
class MultiheadAttention(GroupedQueryAttention): |
|
"""Multi-head self attention. |
|
|
|
Using torch or triton attention implementation enables user to also use |
|
additive bias. |
|
""" |
|
|
|
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True): |
|
super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias) |
|
|
|
class MultiQueryAttention(GroupedQueryAttention): |
|
"""Multi-Query self attention. |
|
|
|
Using torch or triton attention implementation enables user to also use |
|
additive bias. |
|
""" |
|
|
|
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True): |
|
super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias) |
|
|
|
def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[Tuple[int, int, int, int]]: |
|
if attn_impl == 'flash': |
|
return None |
|
elif attn_impl in ['torch', 'triton']: |
|
if alibi: |
|
if (prefix_lm or not causal) or use_sequence_id: |
|
return (1, n_heads, seq_len, seq_len) |
|
return (1, n_heads, 1, seq_len) |
|
elif prefix_lm or use_sequence_id: |
|
return (1, 1, seq_len, seq_len) |
|
return None |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
|
|
def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]: |
|
if attn_impl == 'flash': |
|
return None |
|
elif attn_impl in ['torch', 'triton']: |
|
if alibi: |
|
(device, dtype) = (attn_bias.device, attn_bias.dtype) |
|
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype)) |
|
return attn_bias |
|
else: |
|
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') |
|
|
|
def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None) -> torch.Tensor: |
|
_n_heads = 2 ** math.ceil(math.log2(n_heads)) |
|
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) |
|
m = m.mul(alibi_bias_max / _n_heads) |
|
slopes = 1.0 / torch.pow(2, m) |
|
if _n_heads != n_heads: |
|
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] |
|
return slopes.view(1, n_heads, 1, 1) |
|
|
|
def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor: |
|
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len) |
|
if full: |
|
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1) |
|
alibi_bias = alibi_bias.abs().mul(-1) |
|
slopes = gen_slopes(n_heads, alibi_bias_max, device=device) |
|
alibi_bias = alibi_bias * slopes |
|
return alibi_bias.to(dtype=dtype) |
|
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, 'grouped_query_attention': GroupedQueryAttention} |