Fix '_expand_mask' error
Browse files- hf_prefixlm_converter.py +6 -241
hf_prefixlm_converter.py
CHANGED
@@ -6,23 +6,13 @@ Causal LM to convert it to a Prefix LM.
|
|
6 |
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
7 |
and treat the input prompt as the prefix in `generate`.
|
8 |
"""
|
9 |
-
import math
|
10 |
-
import warnings
|
11 |
from types import MethodType
|
12 |
-
from typing import Any,
|
13 |
import torch
|
14 |
-
from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
|
15 |
-
from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
|
16 |
-
from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
|
17 |
-
from transformers.models.bloom.modeling_bloom import logging
|
18 |
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
19 |
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
|
20 |
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
21 |
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
22 |
-
from transformers.models.opt.modeling_opt import OPTForCausalLM
|
23 |
-
from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
|
24 |
-
from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
|
25 |
-
logger = logging.get_logger(__name__)
|
26 |
_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
|
27 |
CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
|
28 |
|
@@ -90,13 +80,14 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
|
|
90 |
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
91 |
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
92 |
for attn_module in attn_modules:
|
|
|
93 |
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
|
94 |
output = call_og_forward()
|
95 |
for attn_module in attn_modules:
|
96 |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
97 |
return output
|
98 |
|
99 |
-
def generate(self: CAUSAL_GPT_TYPES, *args:
|
100 |
"""Wraps original generate to enable PrefixLM attention."""
|
101 |
attn_modules = _get_attn_modules(model)
|
102 |
for attn_module in attn_modules:
|
@@ -109,228 +100,8 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
|
|
109 |
setattr(model, 'generate', MethodType(generate, model))
|
110 |
setattr(model, '_prefix_lm_converted', True)
|
111 |
return model
|
112 |
-
|
113 |
-
|
114 |
-
"""Converts a BLOOM Causal LM to a Prefix LM.
|
115 |
-
|
116 |
-
Supported HuggingFace model classes:
|
117 |
-
- `BloomForCausalLM`
|
118 |
-
|
119 |
-
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
120 |
-
"""
|
121 |
-
if hasattr(model, '_prefix_lm_converted'):
|
122 |
-
return model
|
123 |
-
assert isinstance(model, BloomForCausalLM)
|
124 |
-
assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'
|
125 |
-
|
126 |
-
def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor:
|
127 |
-
combined_attention_mask = None
|
128 |
-
device = attention_mask.device
|
129 |
-
(_, src_length) = input_shape
|
130 |
-
if src_length > 1:
|
131 |
-
combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length)
|
132 |
-
if bidirectional_mask is not None:
|
133 |
-
assert attention_mask.shape == bidirectional_mask.shape
|
134 |
-
expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length)
|
135 |
-
combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask)
|
136 |
-
expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length)
|
137 |
-
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
138 |
-
return combined_attention_mask
|
139 |
-
|
140 |
-
def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
|
141 |
-
num_heads = self.config.n_head
|
142 |
-
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
143 |
-
base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
144 |
-
powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
|
145 |
-
slopes = torch.pow(base, powers)
|
146 |
-
if closest_power_of_2 != num_heads:
|
147 |
-
extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
148 |
-
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
149 |
-
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
|
150 |
-
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
151 |
-
qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1)
|
152 |
-
ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1)
|
153 |
-
diffs = qa - ka + key_length - query_length
|
154 |
-
diffs = -diffs.abs()
|
155 |
-
alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length)
|
156 |
-
alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length)
|
157 |
-
return alibi.to(dtype)
|
158 |
-
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
159 |
-
|
160 |
-
def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
161 |
-
if deprecated_arguments.pop('position_ids', False) is not False:
|
162 |
-
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
|
163 |
-
if len(deprecated_arguments) > 0:
|
164 |
-
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
165 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
166 |
-
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
167 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
168 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
169 |
-
if input_ids is not None and inputs_embeds is not None:
|
170 |
-
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
171 |
-
elif input_ids is not None:
|
172 |
-
(batch_size, seq_length) = input_ids.shape
|
173 |
-
elif inputs_embeds is not None:
|
174 |
-
(batch_size, seq_length, _) = inputs_embeds.shape
|
175 |
-
else:
|
176 |
-
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
177 |
-
if past_key_values is None:
|
178 |
-
past_key_values = tuple([None] * len(self.h))
|
179 |
-
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
180 |
-
if inputs_embeds is None:
|
181 |
-
inputs_embeds = self.word_embeddings(input_ids)
|
182 |
-
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
183 |
-
presents = () if use_cache else None
|
184 |
-
all_self_attentions = () if output_attentions else None
|
185 |
-
all_hidden_states = () if output_hidden_states else None
|
186 |
-
seq_length_with_past = seq_length
|
187 |
-
past_key_values_length = 0
|
188 |
-
if past_key_values[0] is not None:
|
189 |
-
tmp = past_key_values[0][0]
|
190 |
-
past_key_values_length = tmp.shape[2]
|
191 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
192 |
-
if attention_mask is None:
|
193 |
-
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
194 |
-
else:
|
195 |
-
attention_mask = attention_mask.to(hidden_states.device)
|
196 |
-
alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device)
|
197 |
-
causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length)
|
198 |
-
for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)):
|
199 |
-
if output_hidden_states:
|
200 |
-
hst = (hidden_states,)
|
201 |
-
all_hidden_states = all_hidden_states + hst
|
202 |
-
if self.gradient_checkpointing and self.training:
|
203 |
-
if use_cache:
|
204 |
-
logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
|
205 |
-
use_cache = False
|
206 |
-
|
207 |
-
def create_custom_forward(module):
|
208 |
-
|
209 |
-
def custom_forward(*inputs):
|
210 |
-
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
211 |
-
return custom_forward
|
212 |
-
outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
|
213 |
-
else:
|
214 |
-
outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi)
|
215 |
-
hidden_states = outputs[0]
|
216 |
-
if use_cache is True:
|
217 |
-
presents = presents + (outputs[1],)
|
218 |
-
if output_attentions:
|
219 |
-
oa = (outputs[2 if use_cache else 1],)
|
220 |
-
all_self_attentions = all_self_attentions + oa
|
221 |
-
hidden_states = self.ln_f(hidden_states)
|
222 |
-
if output_hidden_states:
|
223 |
-
hst = (hidden_states,)
|
224 |
-
all_hidden_states = all_hidden_states + hst
|
225 |
-
if not return_dict:
|
226 |
-
return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None))
|
227 |
-
return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
|
228 |
-
setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
|
229 |
-
setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
|
230 |
-
setattr(model.transformer, 'forward', MethodType(forward, model.transformer))
|
231 |
-
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
232 |
-
|
233 |
-
def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
234 |
-
"""Replacement forward method for BloomCausalLM."""
|
235 |
-
if deprecated_arguments.pop('position_ids', False) is not False:
|
236 |
-
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
|
237 |
-
if len(deprecated_arguments) > 0:
|
238 |
-
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
239 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
240 |
-
transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
241 |
-
hidden_states = transformer_outputs[0]
|
242 |
-
lm_logits = self.lm_head(hidden_states)
|
243 |
-
loss = None
|
244 |
-
if labels is not None:
|
245 |
-
shift_logits = lm_logits[..., :-1, :].contiguous()
|
246 |
-
shift_labels = labels[..., 1:].contiguous()
|
247 |
-
(batch_size, seq_length, vocab_size) = shift_logits.shape
|
248 |
-
loss_fct = CrossEntropyLoss()
|
249 |
-
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length))
|
250 |
-
if not return_dict:
|
251 |
-
output = (lm_logits,) + transformer_outputs[1:]
|
252 |
-
return (loss,) + output if loss is not None else output
|
253 |
-
return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
|
254 |
-
|
255 |
-
def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict:
|
256 |
-
if past:
|
257 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
258 |
-
bidirectional_mask = None
|
259 |
-
if past[0][0].shape[0] == input_ids.shape[0]:
|
260 |
-
past = self._convert_to_bloom_cache(past)
|
261 |
-
else:
|
262 |
-
bidirectional_mask = torch.ones_like(input_ids)
|
263 |
-
return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask}
|
264 |
-
setattr(model, 'forward', MethodType(forward, model))
|
265 |
-
setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model))
|
266 |
-
setattr(model, '_prefix_lm_converted', True)
|
267 |
-
return model
|
268 |
-
|
269 |
-
def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
|
270 |
-
"""Converts an OPT Causal LM to a Prefix LM.
|
271 |
-
|
272 |
-
Supported HuggingFace model classes:
|
273 |
-
- `OPTForCausalLM`
|
274 |
-
|
275 |
-
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
276 |
-
"""
|
277 |
-
if hasattr(model, '_prefix_lm_converted'):
|
278 |
-
return model
|
279 |
-
assert isinstance(model, OPTForCausalLM)
|
280 |
-
assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'
|
281 |
-
setattr(model, '_original_forward', getattr(model, 'forward'))
|
282 |
-
setattr(model, '_original_generate', getattr(model, 'generate'))
|
283 |
-
model.model.decoder.bidirectional_mask = None
|
284 |
-
|
285 |
-
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
286 |
-
combined_attention_mask = None
|
287 |
-
if input_shape[-1] > 1:
|
288 |
-
if self.bidirectional_mask == 'g':
|
289 |
-
(bsz, src_length) = input_shape
|
290 |
-
combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
291 |
-
else:
|
292 |
-
combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
|
293 |
-
if self.bidirectional_mask is not None:
|
294 |
-
assert attention_mask.shape == self.bidirectional_mask.shape
|
295 |
-
expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
296 |
-
combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
|
297 |
-
if attention_mask is not None:
|
298 |
-
expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
299 |
-
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
300 |
-
return combined_attention_mask
|
301 |
-
setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder))
|
302 |
-
|
303 |
-
def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
304 |
-
|
305 |
-
def call_og_forward():
|
306 |
-
return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
307 |
-
if bidirectional_mask is None:
|
308 |
-
return call_og_forward()
|
309 |
-
self.model.decoder.bidirectional_mask = bidirectional_mask
|
310 |
-
try:
|
311 |
-
outputs = call_og_forward()
|
312 |
-
except:
|
313 |
-
self.model.decoder.bidirectional_mask = None
|
314 |
-
raise
|
315 |
-
self.model.decoder.bidirectional_mask = None
|
316 |
-
return outputs
|
317 |
-
|
318 |
-
def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]):
|
319 |
-
"""Wraps original generate to enable PrefixLM-style attention."""
|
320 |
-
self.model.decoder.bidirectional_mask = 'g'
|
321 |
-
try:
|
322 |
-
output = self._original_generate(*args, **kwargs)
|
323 |
-
except:
|
324 |
-
self.model.decoder.bidirectional_mask = None
|
325 |
-
raise
|
326 |
-
self.model.decoder.bidirectional_mask = None
|
327 |
-
return output
|
328 |
-
setattr(model, 'forward', MethodType(forward, model))
|
329 |
-
setattr(model, 'generate', MethodType(generate, model))
|
330 |
-
setattr(model, '_prefix_lm_converted', True)
|
331 |
-
return model
|
332 |
-
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM)
|
333 |
-
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]
|
334 |
|
335 |
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
|
336 |
"""Converts a HuggingFace Causal LM to a Prefix LM.
|
@@ -340,8 +111,6 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
|
|
340 |
- `GPTNeoForCausalLM`
|
341 |
- `GPTNeoXForCausalLM`
|
342 |
- `GPTJForCausalLM`
|
343 |
-
- `BloomForCausalLM`
|
344 |
-
- `OPTForCausalLM`
|
345 |
|
346 |
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
|
347 |
`generate` method and/or select underlying methods depending on the model class.
|
@@ -391,14 +160,10 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
|
|
391 |
"""
|
392 |
if isinstance(model, _SUPPORTED_GPT_MODELS):
|
393 |
return _convert_gpt_causal_lm_to_prefix_lm(model)
|
394 |
-
elif isinstance(model, BloomForCausalLM):
|
395 |
-
return _convert_bloom_causal_lm_to_prefix_lm(model)
|
396 |
-
elif isinstance(model, OPTForCausalLM):
|
397 |
-
return _convert_opt_causal_lm_to_prefix_lm(model)
|
398 |
else:
|
399 |
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
|
400 |
|
401 |
-
def add_bidirectional_mask_if_missing(batch:
|
402 |
"""Attempts to add bidirectional_mask to batch if missing.
|
403 |
|
404 |
Raises:
|
|
|
6 |
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
7 |
and treat the input prompt as the prefix in `generate`.
|
8 |
"""
|
|
|
|
|
9 |
from types import MethodType
|
10 |
+
from typing import Any, List, MutableMapping, Optional, Tuple, Union
|
11 |
import torch
|
|
|
|
|
|
|
|
|
12 |
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
13 |
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
|
14 |
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
15 |
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
|
|
|
|
|
|
|
|
16 |
_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
|
17 |
CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
|
18 |
|
|
|
80 |
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
81 |
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
82 |
for attn_module in attn_modules:
|
83 |
+
assert isinstance(attn_module.bias, torch.Tensor)
|
84 |
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
|
85 |
output = call_og_forward()
|
86 |
for attn_module in attn_modules:
|
87 |
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
88 |
return output
|
89 |
|
90 |
+
def generate(self: CAUSAL_GPT_TYPES, *args: Any, **kwargs: Any):
|
91 |
"""Wraps original generate to enable PrefixLM attention."""
|
92 |
attn_modules = _get_attn_modules(model)
|
93 |
for attn_module in attn_modules:
|
|
|
100 |
setattr(model, 'generate', MethodType(generate, model))
|
101 |
setattr(model, '_prefix_lm_converted', True)
|
102 |
return model
|
103 |
+
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS
|
104 |
+
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
|
107 |
"""Converts a HuggingFace Causal LM to a Prefix LM.
|
|
|
111 |
- `GPTNeoForCausalLM`
|
112 |
- `GPTNeoXForCausalLM`
|
113 |
- `GPTJForCausalLM`
|
|
|
|
|
114 |
|
115 |
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
|
116 |
`generate` method and/or select underlying methods depending on the model class.
|
|
|
160 |
"""
|
161 |
if isinstance(model, _SUPPORTED_GPT_MODELS):
|
162 |
return _convert_gpt_causal_lm_to_prefix_lm(model)
|
|
|
|
|
|
|
|
|
163 |
else:
|
164 |
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
|
165 |
|
166 |
+
def add_bidirectional_mask_if_missing(batch: MutableMapping):
|
167 |
"""Attempts to add bidirectional_mask to batch if missing.
|
168 |
|
169 |
Raises:
|