Image-Text-to-Text
Safetensors
openvla
custom_code
File size: 7,852 Bytes
1b73161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from collections import defaultdict

import numpy as np
from prismatic.vla.action_tokenizer import ActionTokenizer
from transformers import AutoTokenizer


class Solver:
    def __init__(self, action_tokenizer=None, verbose=True) -> None:
        self.verbose = verbose
        self.action_tokenizer = action_tokenizer
        self.coordinates_key = "NEXT GRIPPER:"
        self.movement_key = "MOVEMENT:"
        self.policy_key = "POLICIES:"

    def compare_movement(self, pred_pos, label_pos):

        dist = np.sum(np.abs(pred_pos - label_pos))
        relative_dist = np.sum(np.abs(dist / label_pos))
        return dist, relative_dist, dist == 0

    def compare_policy(self, pred_pol, label_pol):
        dist = 0
        cnt = 0
        for i in range(min(len(label_pol), len(pred_pol))):
            for j in range(len(label_pol[0])):
                dist += label_pol[i][j] == pred_pol[i][j]
                cnt += 1
        assert cnt % 7 == 0
        return dist / cnt

    def extract_2d_coordinates(self, text):
        try:
            coordinates_index = text.index(self.coordinates_key) + len(self.coordinates_key)
            coord = text[coordinates_index:]
            coord = [o for o in coord.split("\n") if len(o.strip()) != 0]
            coord = eval(coord[0].strip())
        except Exception:
            coord = [0, 0]
        return coord

    def extract_movement_plan(self, text):
        require_unorm = None
        try:
            # text after key word
            movement_index = text.index(self.movement_key) + len(self.movement_key)
            movement_level = text[movement_index:]
            movement_level = [o for o in movement_level.split("\n") if len(o.strip()) != 0]
            movement_level = movement_level[0].strip()

            if "gripper" not in movement_level:  # for normalized tokenized version
                require_unorm = True
                movement_token_ids = self.action_tokenizer.tokenizer(movement_level, add_special_tokens=False).input_ids
                movement_norm = self.action_tokenizer.decode_token_ids_to_actions(np.array(movement_token_ids))
                movement_norm = movement_norm[1:8]
                assert len(movement_norm) == 7
            else:  # for unnormalized text version
                require_unorm = False
                movement_level = [o for o in movement_level.split(";") if len(o) > 0]
                movement_level = movement_level[:7]

                position = defaultdict(int)
                movement_to_pos = dict(
                    move_backward=(-1, "y"),
                    move_forward=(1, "y"),
                    move_right=(-1, "x"),
                    move_left=(1, "x"),
                    move_downward=(-1, "z"),
                    move_upward=(1, "z"),
                    roll_downward=(-1, "ox"),
                    roll_upward=(1, "ox"),
                    swing_downward=(-1, "ox"),
                    swing_upward=(1, "ox"),
                    pitch_downward=(-1, "oy"),
                    pitch_upward=(1, "oy"),
                    yaw_downward=(-1, "oz"),
                    yaw_upward=(1, "oz"),
                    rotate_clockwise=(-1, "oz"),
                    rotate_counterclockwise=(1, "oz"),
                    close_gripper=(-1, "grip"),
                    open_gripper=(1, "grip"),
                )

                for ml in movement_level:
                    direction = "_".join(ml.split()[:2])
                    sign, axis = movement_to_pos[direction]
                    scale = 1
                    if "o" in axis:  # for orientation
                        scale = scale * 1e-3
                    elif "grip" in axis:  # for gripper
                        scale = scale
                    else:  # for xyz
                        scale = scale / 180 * np.pi

                    if "grip" in axis:
                        level = round("open" in ml)
                    else:
                        level = int(ml.split()[2])

                    position[axis] += sign * scale * level
                movement_norm = [position[idx] for idx in ["x", "y", "z", "ox", "oy", "oz", "grip"]]

        except:
            movement_norm = [-100] * 7

        return require_unorm, np.array(movement_norm)

    def extract_action_policies(self, text):
        try:
            if self.policy_key in text:

                policy_index = text.index(self.policy_key) + len(self.policy_key)
                policy = text[policy_index:]
                remain_text = text[: text.index(self.policy_key)]
                policies = [o for o in policy.split("\n") if len(o.strip()) != 0]
                policies = policies[0].strip()
            else:
                policies = text.strip()
                remain_text = ""

            policies_num = []
            for policy_text in policies.split(";"):
                policy_token = self.action_tokenizer.tokenizer(policy_text, add_special_tokens=False).input_ids
                action_policy = self.action_tokenizer.decode_token_ids_to_actions(np.array(policy_token))
                # The first token is meaningless
                action_policy = action_policy[1:]
                action_policy = action_policy[:7]
                # assert len(action_policy) == 7
                if len(action_policy) != 7:
                    action_policy = [0] * 7
                policies_num.append(action_policy.tolist())

        except:
            policies_num = [[0] * 7]
            remain_text = text

        return policies_num, remain_text

    def evaluate_single(self, ground_truth, prediction, verbose=False):
        gt_policies, ground_truth = self.extract_action_policies(ground_truth)
        pred_policies, prediction = self.extract_action_policies(prediction)

        _, pred_movement = self.extract_movement_plan(prediction)
        _, gt_movement = self.extract_movement_plan(ground_truth)

        dist, relative_dist, _ = self.compare_movement(label_pos=gt_movement, pred_pos=pred_movement)

        # pred_2d = self.extract_2d_coordinates(prediction)
        # gt_2d = self.extract_2d_coordinates(ground_truth)

        next_state_score = 0

        acc = self.compare_policy(label_pol=gt_policies, pred_pol=pred_policies)

        return next_state_score, acc, dist, relative_dist, pred_policies, gt_policies

    def evaluate_batch(self, batch_gt, batch_pred, verbose=False):
        state_acc_ls = []
        action_acc_ls = []
        L1_loss_ls = []
        relative_L1_loss_ls = []
        pred_policies_ls = []
        gt_policies_ls = []
        for i in range(len(batch_gt)):
            ground_truth = batch_gt[i]
            prediction = batch_pred[i]
            next_state_score, action_policy_score, L1_dist, relative_L1_dist, pred_policies, gt_policies = (
                self.evaluate_single(ground_truth, prediction)
            )
            state_acc_ls.append(next_state_score)
            action_acc_ls.append(action_policy_score)
            L1_loss_ls.append(L1_dist)
            relative_L1_loss_ls.append(relative_L1_dist)
            pred_policies_ls.append(pred_policies)
            gt_policies_ls.append(gt_policies)
            if verbose:
                print(f"Ground Truth:\n\n {ground_truth}")
                print()
                print(f"prediction:\n\n {prediction}")
                print()
                print(f"Ground Truth Policies:\n\n {gt_policies}")
                print(f"prediction policies:\n\n {pred_policies}")
                print("*" * 40)

        return state_acc_ls, action_acc_ls, L1_loss_ls, relative_L1_loss_ls, pred_policies_ls, gt_policies_ls


tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", model_max_length=2048, padding_side="right")
action_tokenizer = ActionTokenizer(tokenizer)
solver = Solver(action_tokenizer)