File size: 7,852 Bytes
1b73161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
from collections import defaultdict
import numpy as np
from prismatic.vla.action_tokenizer import ActionTokenizer
from transformers import AutoTokenizer
class Solver:
def __init__(self, action_tokenizer=None, verbose=True) -> None:
self.verbose = verbose
self.action_tokenizer = action_tokenizer
self.coordinates_key = "NEXT GRIPPER:"
self.movement_key = "MOVEMENT:"
self.policy_key = "POLICIES:"
def compare_movement(self, pred_pos, label_pos):
dist = np.sum(np.abs(pred_pos - label_pos))
relative_dist = np.sum(np.abs(dist / label_pos))
return dist, relative_dist, dist == 0
def compare_policy(self, pred_pol, label_pol):
dist = 0
cnt = 0
for i in range(min(len(label_pol), len(pred_pol))):
for j in range(len(label_pol[0])):
dist += label_pol[i][j] == pred_pol[i][j]
cnt += 1
assert cnt % 7 == 0
return dist / cnt
def extract_2d_coordinates(self, text):
try:
coordinates_index = text.index(self.coordinates_key) + len(self.coordinates_key)
coord = text[coordinates_index:]
coord = [o for o in coord.split("\n") if len(o.strip()) != 0]
coord = eval(coord[0].strip())
except Exception:
coord = [0, 0]
return coord
def extract_movement_plan(self, text):
require_unorm = None
try:
# text after key word
movement_index = text.index(self.movement_key) + len(self.movement_key)
movement_level = text[movement_index:]
movement_level = [o for o in movement_level.split("\n") if len(o.strip()) != 0]
movement_level = movement_level[0].strip()
if "gripper" not in movement_level: # for normalized tokenized version
require_unorm = True
movement_token_ids = self.action_tokenizer.tokenizer(movement_level, add_special_tokens=False).input_ids
movement_norm = self.action_tokenizer.decode_token_ids_to_actions(np.array(movement_token_ids))
movement_norm = movement_norm[1:8]
assert len(movement_norm) == 7
else: # for unnormalized text version
require_unorm = False
movement_level = [o for o in movement_level.split(";") if len(o) > 0]
movement_level = movement_level[:7]
position = defaultdict(int)
movement_to_pos = dict(
move_backward=(-1, "y"),
move_forward=(1, "y"),
move_right=(-1, "x"),
move_left=(1, "x"),
move_downward=(-1, "z"),
move_upward=(1, "z"),
roll_downward=(-1, "ox"),
roll_upward=(1, "ox"),
swing_downward=(-1, "ox"),
swing_upward=(1, "ox"),
pitch_downward=(-1, "oy"),
pitch_upward=(1, "oy"),
yaw_downward=(-1, "oz"),
yaw_upward=(1, "oz"),
rotate_clockwise=(-1, "oz"),
rotate_counterclockwise=(1, "oz"),
close_gripper=(-1, "grip"),
open_gripper=(1, "grip"),
)
for ml in movement_level:
direction = "_".join(ml.split()[:2])
sign, axis = movement_to_pos[direction]
scale = 1
if "o" in axis: # for orientation
scale = scale * 1e-3
elif "grip" in axis: # for gripper
scale = scale
else: # for xyz
scale = scale / 180 * np.pi
if "grip" in axis:
level = round("open" in ml)
else:
level = int(ml.split()[2])
position[axis] += sign * scale * level
movement_norm = [position[idx] for idx in ["x", "y", "z", "ox", "oy", "oz", "grip"]]
except:
movement_norm = [-100] * 7
return require_unorm, np.array(movement_norm)
def extract_action_policies(self, text):
try:
if self.policy_key in text:
policy_index = text.index(self.policy_key) + len(self.policy_key)
policy = text[policy_index:]
remain_text = text[: text.index(self.policy_key)]
policies = [o for o in policy.split("\n") if len(o.strip()) != 0]
policies = policies[0].strip()
else:
policies = text.strip()
remain_text = ""
policies_num = []
for policy_text in policies.split(";"):
policy_token = self.action_tokenizer.tokenizer(policy_text, add_special_tokens=False).input_ids
action_policy = self.action_tokenizer.decode_token_ids_to_actions(np.array(policy_token))
# The first token is meaningless
action_policy = action_policy[1:]
action_policy = action_policy[:7]
# assert len(action_policy) == 7
if len(action_policy) != 7:
action_policy = [0] * 7
policies_num.append(action_policy.tolist())
except:
policies_num = [[0] * 7]
remain_text = text
return policies_num, remain_text
def evaluate_single(self, ground_truth, prediction, verbose=False):
gt_policies, ground_truth = self.extract_action_policies(ground_truth)
pred_policies, prediction = self.extract_action_policies(prediction)
_, pred_movement = self.extract_movement_plan(prediction)
_, gt_movement = self.extract_movement_plan(ground_truth)
dist, relative_dist, _ = self.compare_movement(label_pos=gt_movement, pred_pos=pred_movement)
# pred_2d = self.extract_2d_coordinates(prediction)
# gt_2d = self.extract_2d_coordinates(ground_truth)
next_state_score = 0
acc = self.compare_policy(label_pol=gt_policies, pred_pol=pred_policies)
return next_state_score, acc, dist, relative_dist, pred_policies, gt_policies
def evaluate_batch(self, batch_gt, batch_pred, verbose=False):
state_acc_ls = []
action_acc_ls = []
L1_loss_ls = []
relative_L1_loss_ls = []
pred_policies_ls = []
gt_policies_ls = []
for i in range(len(batch_gt)):
ground_truth = batch_gt[i]
prediction = batch_pred[i]
next_state_score, action_policy_score, L1_dist, relative_L1_dist, pred_policies, gt_policies = (
self.evaluate_single(ground_truth, prediction)
)
state_acc_ls.append(next_state_score)
action_acc_ls.append(action_policy_score)
L1_loss_ls.append(L1_dist)
relative_L1_loss_ls.append(relative_L1_dist)
pred_policies_ls.append(pred_policies)
gt_policies_ls.append(gt_policies)
if verbose:
print(f"Ground Truth:\n\n {ground_truth}")
print()
print(f"prediction:\n\n {prediction}")
print()
print(f"Ground Truth Policies:\n\n {gt_policies}")
print(f"prediction policies:\n\n {pred_policies}")
print("*" * 40)
return state_acc_ls, action_acc_ls, L1_loss_ls, relative_L1_loss_ls, pred_policies_ls, gt_policies_ls
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", model_max_length=2048, padding_side="right")
action_tokenizer = ActionTokenizer(tokenizer)
solver = Solver(action_tokenizer)
|