""" modeling_prismatic.py Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions, inheriting from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained, but exactly replicate the logic in `prismatic.models.vlms.prismatic.py`. Note =>> for the time being, not adding the custom HF "docstring" formatting. References [LLaVa, IDEFICS-2]: => https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py => https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/modeling_idefics2.py """ import logging from dataclasses import dataclass from functools import partial from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union import numpy as np import timm import tokenizers import torch import torch.nn as nn import transformers from timm.models.vision_transformer import LayerScale from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel from transformers.modeling_outputs import ModelOutput from PIL import Image from .configuration_prismatic import OpenVLAConfig, PrismaticConfig from .solver import solver # Get Logger logger = logging.getLogger(__name__) # === PyTorch/HuggingFace Default IGNORE_INDEX (for CrossEntropyLoss labels) IGNORE_INDEX = -100 # === Utility Functions for Monkey-Patching === def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]: def wrapper(*args: Any, **kwargs: Any) -> Any: result = fn(*args, **kwargs) return result[0] if isinstance(result, tuple) else result return wrapper # HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale. # =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109 # =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960 def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor: return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor def ls_apply_patch(ls_module: LayerScale): ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone()) ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale) del ls_module.gamma # === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) === class PrismaticVisionBackbone(nn.Module): def __init__( self, use_fused_vision_backbone: bool, image_sizes: List[int], timm_model_ids: List[str], timm_override_act_layers: List[Optional[str]], ) -> None: super().__init__() self.use_fused_vision_backbone = use_fused_vision_backbone # [Contract] Validate number of (fused) vision backbones, create "alpha" featurizer and Instantiate # =>> Note :: Monkey-Patch the `forward()` function of the backbone to ensure FSDP-compatibility # Hardcodes `get_intermediate_layers` to return the **SECOND-TO-LAST** layer patches! assert len(timm_model_ids) <= 2, "Prismatic models only support up to 2 (fused) vision backbones!" self.featurizer = timm.create_model( timm_model_ids[0], pretrained=False, num_classes=0, img_size=image_sizes[0], act_layer=timm_override_act_layers[0], ) self.featurizer.forward = unpack_tuple( partial(self.featurizer.get_intermediate_layers, n={len(self.featurizer.blocks) - 2}) ) self.embed_dim = self.featurizer.embed_dim # If `use_fused_vision_backbone` =>> create "beta" featurizer if self.use_fused_vision_backbone: self.fused_featurizer = timm.create_model( timm_model_ids[1], pretrained=False, num_classes=0, img_size=image_sizes[1], act_layer=timm_override_act_layers[1], ) self.fused_featurizer.forward = unpack_tuple( partial(self.fused_featurizer.get_intermediate_layers, n={len(self.fused_featurizer.blocks) - 2}) ) self.embed_dim += self.fused_featurizer.embed_dim # Patch `vision_backbone.featurizer` and `vision_backbone.fused_featurizer` with HF-Compatible LayerScale for module in self.featurizer.modules(): if isinstance(module, LayerScale): ls_apply_patch(module) if self.use_fused_vision_backbone: for module in self.fused_featurizer.modules(): if isinstance(module, LayerScale): ls_apply_patch(module) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: """Run image (`pixel_values`) through featurizer; if channel-stacked, then dispatch and sequence stack.""" if not self.use_fused_vision_backbone: return self.featurizer(pixel_values) # Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack img, img_fused = torch.split(pixel_values, [3, 3], dim=1) patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused) return torch.cat([patches, patches_fused], dim=2) # === Prismatic Projector (nn.Module) Definitions === class PrismaticProjector(nn.Module): def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None: super().__init__() self.use_fused_vision_backbone = use_fused_vision_backbone self.vision_dim, self.llm_dim = vision_dim, llm_dim # Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors! if not self.use_fused_vision_backbone: self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True) self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True) self.act_fn1 = nn.GELU() else: initial_projection_dim = 4 * vision_dim self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True) self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True) self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True) self.act_fn1 = nn.GELU() self.act_fn2 = nn.GELU() def forward(self, img_patches: torch.Tensor) -> torch.Tensor: if not self.use_fused_vision_backbone: projected_features = self.fc1(img_patches) projected_features = self.act_fn1(projected_features) projected_features = self.fc2(projected_features) else: projected_features = self.fc1(img_patches) projected_features = self.act_fn1(projected_features) projected_features = self.fc2(projected_features) projected_features = self.act_fn2(projected_features) projected_features = self.fc3(projected_features) return projected_features # === Main HF Class Definitions === @dataclass class PrismaticCausalLMOutputWithPast(ModelOutput): """Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features.""" loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Additions for VLMs projector_features: Optional[torch.FloatTensor] = None class PrismaticPreTrainedModel(PreTrainedModel): config_class: PretrainedConfig = PrismaticConfig base_model_prefix: str = "model" supports_gradient_checkpointing: bool = True _no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"] _skip_keys_device_placement: str = "past_key_values" _supports_flash_attn_2: bool = True def _init_weights(self, module: nn.Module) -> None: # Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning! # => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at # https://github.com/TRI-ML/prismatic-vlms std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def _supports_sdpa(self) -> bool: """Check LLM supports SDPA Attention""" return self.language_model._supports_sdpa class PrismaticForConditionalGeneration(PrismaticPreTrainedModel): def __init__(self, config: PrismaticConfig) -> None: super().__init__(config) # [Validation] Lightweight Validate on `config` Fields + Dependency Versions if config.use_fused_vision_backbone is None: raise ValueError("Missing config field `use_fused_vision_backbone`") if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}: raise NotImplementedError( "TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue " "if you urgently need support for latest TIMM versions." ) if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"): logger.warning( f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got " f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; " f"there might be inference-time regressions due to dependency changes. If in doubt, please" f"use the above versions." ) # Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone) self.vision_backbone = PrismaticVisionBackbone( config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers ) # Create Multimodal Projector self.projector = PrismaticProjector( config.use_fused_vision_backbone, vision_dim=self.vision_backbone.embed_dim, llm_dim=config.text_config.hidden_size, ) # Instantiate LLM Backbone self.language_model = AutoModelForCausalLM.from_config( config.text_config, attn_implementation=config._attn_implementation ) self.vocab_size = config.text_config.vocab_size self.pad_token_id = config.pad_token_id # HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing self.post_init() # === `PreTrainedModel` Boilerplate === def get_input_embeddings(self) -> nn.Module: return self.language_model.get_input_embeddings() def set_input_embeddings(self, value: nn.Module) -> None: self.language_model.set_input_embeddings(value) def get_output_embeddings(self) -> nn.Module: return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings: nn.Module) -> None: self.language_model.set_output_embeddings(new_embeddings) def get_decoder(self) -> nn.Module: return self.language_model.get_decoder() def set_decoder(self, decoder: nn.Module) -> None: self.language_model.set_decoder(decoder) def tie_weights(self) -> None: self.language_model.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op) def resize_token_embeddings( self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None ) -> nn.Embedding: updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) # Update config/instance variables self.config.text_config.vocab_size = updated_embeddings.num_embeddings self.vocab_size = updated_embeddings.num_embeddings return updated_embeddings # === Core Prismatic VLM `forward()` Logic === def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_projector_features: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PrismaticCausalLMOutputWithPast]: """Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance.""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_projector_features = output_projector_features if output_projector_features is not None else False return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Respect `use_cache` only if not training (even if `gradient_checkpointing` is off) use_cache = use_cache and not self.training # Instantiate Placeholder for Projector Features projected_patch_embeddings = None # Note :: We only support forward passes with the following cases: # => Cached Generation :: (input_ids.shape[1] == 1) and (past_key_values is not None) # => Unimodal Forward :: (pixel_values is None) # => Multimodal Forward :: (pixel_values is not None) and (input_ids/embeds.shape[0] == pixel_values.shape[0]) # === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` === if input_ids.shape[1] == 1: assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!" assert past_key_values is not None, "You must provide `past_key_values` during cached generation!" assert labels is None, "Unexpected key `labels` provided during cached generation!" language_model_output = self.language_model( input_ids=input_ids, attention_mask=None, position_ids=None, past_key_values=past_key_values, inputs_embeds=None, labels=None, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # === Handle Unimodal Forward === elif pixel_values is None: assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!" assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!" language_model_output = self.language_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=None, past_key_values=None, inputs_embeds=None, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # === Handle Multimodal Forward === elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]): assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!" # Visual Feature Extraction patch_features = self.vision_backbone(pixel_values) # Projection Logic =>> Update Attention Mask projected_patch_embeddings = self.projector(patch_features) projected_patch_attention_mask = None if attention_mask is not None: projected_patch_attention_mask = torch.full( (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]), fill_value=True, dtype=attention_mask.dtype, device=attention_mask.device, ) # Get Input Embeddings (from Language Model Embeddings) input_embeddings = self.get_input_embeddings()(input_ids) # Build Multimodal Embeddings & Attention Mask =>> Prismatic defaults to inserting after token (1:) multimodal_embeddings = torch.cat( [input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1 ) multimodal_attention_mask = None if attention_mask is not None: multimodal_attention_mask = torch.cat( [attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1 ) # Build Labels (if specified) =>> Ignore Labels for Patch Embeddings multimodal_labels = None if labels is not None: projected_patch_labels = torch.full( (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]), fill_value=IGNORE_INDEX, dtype=labels.dtype, device=labels.device, ) multimodal_labels = torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1) # Dispatch to Language Model language_model_output = self.language_model( input_ids=None, attention_mask=multimodal_attention_mask, position_ids=None, past_key_values=None, inputs_embeds=multimodal_embeddings, labels=multimodal_labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # === Otherwise =>> Assume Invalid! === elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]): raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!") else: raise ValueError( "Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n" f"=> `input_ids` = {input_ids is not None}\n" f"=> `attention_mask` = {attention_mask is not None}\n" f"=> `pixel_values` = {pixel_values is not None}\n" f"=> `labels` = {labels is not None}\n" f"=> `input_embeds` = {inputs_embeds is not None}\n" f"=> `past_key_values` = {past_key_values is not None}\n" f"=> `use_cache` = {use_cache}" ) # Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`) if not return_dict: if output_projector_features and (projected_patch_embeddings is not None): return *language_model_output, projected_patch_embeddings return language_model_output return PrismaticCausalLMOutputWithPast( loss=language_model_output.loss, logits=language_model_output.logits, past_key_values=language_model_output.past_key_values, hidden_states=language_model_output.hidden_states, attentions=language_model_output.attentions, projector_features=projected_patch_embeddings, ) # === GenerationMixin Methods === def prepare_inputs_for_generation( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs: str, ) -> Dict[str, torch.Tensor]: """Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic.""" if ((input_ids is not None) and (input_ids.shape[0] > 1)) or ( (inputs_embeds is not None) and (inputs_embeds.shape[0] > 1) ): raise ValueError("Generation with batch size > 1 is not currently supported!") # Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens if past_key_values is not None: input_ids = input_ids[:, -1:] # If `input_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"input_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} # Make sure `pixel_values` are preserved in `model_inputs` model_inputs.update( { "attention_mask": attention_mask, "pixel_values": pixel_values, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), } ) return model_inputs # Defer to Language Model (all handle this differently, with different return types) def _reorder_cache(self, *args, **kwargs) -> Any: return self.language_model._reorder_cache(*args, **kwargs) class EmmaxForActionPrediction(PrismaticForConditionalGeneration): config_class: PretrainedConfig = OpenVLAConfig def __init__(self, config: OpenVLAConfig) -> None: super().__init__(config) self.norm_stats = config.norm_stats # Compute action bins self.bins = np.linspace(-1, 1, config.n_action_bins) self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0 # Compute vocab size for de-tokenization -- revert added "multiple of" self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of def predict_action( self, input_ids: Optional[torch.LongTensor] = None, unnorm_key: Optional[str] = None, **kwargs: str ) -> np.ndarray: """Thin wrapper around super().generate() that decodes predicted actions and de-normalizes them.""" # We need to add this special empty token ('') after the colon (':') token in "ASSISTANT:" # in order for the predictions to match the training configuration and be accurate. # NOTE: This is NOT needed for ECoT # input_ids = torch.cat( # (input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1 # ) # Run VLA inference generated_ids = self.generate(input_ids, **kwargs) # Extract predicted action tokens and translate into (normalized) continuous actions predicted_action_token_ids = generated_ids[0, -(self.get_action_dim(unnorm_key) + 1) : -1].cpu().numpy() discretized_actions = self.vocab_size - predicted_action_token_ids discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1) normalized_actions = self.bin_centers[discretized_actions] # Unnormalize actions action_norm_stats = self.get_action_stats(unnorm_key) mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool)) action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"]) actions = np.where( mask, 0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low, normalized_actions, ) return actions, generated_ids @torch.inference_mode() def generate_actions(self, inputs, tokenizer, **kwargs: str) -> str: # For now, only support generation with a batch size of 1 for simplicity # image_transform, tokenizer = self.vision_backbone.image_transform, self.llm_backbone.tokenizer # # Prepare Inputs # input_ids = tokenizer(prompt_text, truncation=True, return_tensors="pt").input_ids.to(self.device) # pixel_values = image_transform(image) # if isinstance(pixel_values, torch.Tensor): # pixel_values = pixel_values[None, ...].to(self.device) # elif isinstance(pixel_values, dict): # pixel_values = {k: v[None, ...].to(self.device) for k, v in pixel_values.items()} # else: # raise ValueError(f"Unsupported `pixel_values` type = {type(pixel_values)}") # Invoke super().generate --> taps into `GenerationMixin` which (redirects) to `forward()` # with torch.autocast("cuda", dtype=autocast_dtype, enabled=self.enable_mixed_precision_training): with torch.autocast("cuda", dtype=torch.bfloat16): # fmt: off generated_ids = self.generate( **inputs, **kwargs ) # fmt: on generated_text = tokenizer.decode(generated_ids[0, inputs['input_ids'].shape[1] :], skip_special_tokens=True).strip() s = solver actions, reasoning = s.extract_action_policies(generated_text) # unnorm_key = "bridge_orig" # unnormalize unnorm_key = None action_norm_stats = self.get_action_stats(unnorm_key) mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool)) action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"]) _actions = [] for action in actions: action_norm = np.where( mask, 0.5 * (np.array(action) + 1) * (action_high - action_low) + action_low, action ) _actions.append(action_norm) return _actions[0], generated_text @staticmethod def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str: if unnorm_key is None and len(norm_stats) != 1: raise ValueError( f"Your model was trained on more than one dataset. " f"Please pass a `unnorm_key` from the following options to choose the statistics used for " f"de-normalizing actions: {norm_stats.keys()}" ) # If None, grab the (singular) dataset in `norm_stats` to use as `unnorm_key` unnorm_key = unnorm_key if unnorm_key is not None else next(iter(norm_stats.keys())) if unnorm_key not in norm_stats: raise ValueError( f"The `unnorm_key` you chose ({unnorm_key = }) is not in the available statistics. " f"Please choose from: {norm_stats.keys()}" ) return unnorm_key def get_action_dim(self, unnorm_key: Optional[str] = None) -> int: """Get the dimensionality of the policy's action space.""" unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key) return len(self.norm_stats[unnorm_key]["action"]["q01"]) def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]: """Get all the logged statistics for the given dataset.""" unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key) return self.norm_stats[unnorm_key]["action"]