File size: 9,923 Bytes
125921e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: part-of-speech ( pos ) tagging is a fundamental language analysis task---part-of-speech
    ( pos ) tagging is a fundamental nlp task , used by a wide variety of applications
- text: the two baseline methods were implemented using scikit-learn in python---the
    models were implemented using scikit-learn module
- text: semantic parsing is the task of converting a sentence into a representation
    of its meaning , usually in a logical form grounded in the symbols of some fixed
    ontology or relational database ( cite-p-21-3-3 , cite-p-21-3-4 , cite-p-21-1-11
    )---for this language model , we built a trigram language model with kneser-ney
    smoothing using srilm from the same automatically segmented corpus
- text: the results show that our model can clearly outperform the baselines in terms
    of three evaluation metrics---for the extractive or abstractive summaries , we
    use rouge scores , a metric used to evaluate automatic summarization performance
    , to measure the pairwise agreement of summaries from different annotators
- text: language models were built with srilm , modified kneser-ney smoothing , default
    pruning , and order 5---the language model used was a 5-gram with modified kneserney
    smoothing , built with srilm toolkit
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-TinyBERT-L6-v2
---

# SetFit with sentence-transformers/paraphrase-TinyBERT-L6-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-TinyBERT-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-TinyBERT-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-TinyBERT-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-TinyBERT-L6-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | <ul><li>'the defacto standard metric in machine translation is bleu---from character representations , we propose to generate vector representations of entire tweets from characters in our tweet2vec model'</li><li>'arabic is a highly inflectional language with 85 % of words derived from trilateral roots ( alfedaghi and al-anzi 1989 )---chen et al derive bilingual subtree constraints with auto-parsed source-language sentences'</li><li>'labeling of sentence boundaries is a necessary prerequisite for many natural language processing tasks , including part-of-speech tagging and sentence alignment---we have proposed a model for video description which uses neural networks for the entire pipeline from pixels to sentences'</li></ul>                                          |
| 1     | <ul><li>'in this paper , we present a comprehensive analysis of the relationship between personal traits and brand preferences---in previous research , in this study , we want to systematically investigate the relationship between a comprehensive set of personal traits and brand preferences'</li><li>'the 50-dimensional pre-trained word embeddings are provided by glove , which are fixed during our model training---we use glove vectors with 200 dimensions as pre-trained word embeddings , which are tuned during training'</li><li>'we use glove vectors with 100 dimensions trained on wikipedia and gigaword as word embeddings , which we do not optimize during training---we use glove vectors with 100 dimensions trained on wikipedia and gigaword as word embeddings'</li></ul> |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("whateverweird17/parasci3_1")
# Run inference
preds = model("the two baseline methods were implemented using scikit-learn in python---the models were implemented using scikit-learn module")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 27  | 35.8125 | 54  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 8                     |
| 1     | 8                     |

### Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-----:|:----:|:-------------:|:---------------:|
| 0.025 | 1    | 0.1715        | -               |
| 1.25  | 50   | 0.0028        | -               |
| 2.5   | 100  | 0.0005        | -               |
| 3.75  | 150  | 0.0002        | -               |
| 5.0   | 200  | 0.0003        | -               |
| 6.25  | 250  | 0.0001        | -               |
| 7.5   | 300  | 0.0002        | -               |
| 8.75  | 350  | 0.0001        | -               |
| 10.0  | 400  | 0.0001        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.33.0
- PyTorch: 2.0.0
- Datasets: 2.16.0
- Tokenizers: 0.13.3

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->