--- base_model: HuggingFaceTB/SmolLM2-360M datasets: - arrow library_name: transformers license: apache-2.0 tags: - generated_from_trainer model-index: - name: image-description_to_emotion results: [] --- # image-description_to_emotion This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) on the arrow dataset. It achieves the following results on the evaluation set: - Loss: 0.1650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5979 | 0.3361 | 50 | 0.5039 | | 0.3262 | 0.6723 | 100 | 0.2783 | | 0.2599 | 1.0084 | 150 | 0.2305 | | 0.2211 | 1.3445 | 200 | 0.2071 | | 0.2004 | 1.6807 | 250 | 0.1969 | | 0.2094 | 2.0168 | 300 | 0.1840 | | 0.1788 | 2.3529 | 350 | 0.1797 | | 0.1709 | 2.6891 | 400 | 0.1739 | | 0.1604 | 3.0252 | 450 | 0.1693 | | 0.141 | 3.3613 | 500 | 0.1671 | | 0.1479 | 3.6975 | 550 | 0.1650 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1