upload model
Browse files- README.md +49 -0
- config.json +43 -0
- configuration_adaptformer.py +80 -0
- model.safetensors +3 -0
- modeling_adaptformer.py +647 -0
- preprocessing_adaptformer.py +99 -0
- preprocessor_config.json +23 -0
README.md
CHANGED
@@ -1,3 +1,52 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
+
datasets:
|
7 |
+
- LEVIR-CD
|
8 |
---
|
9 |
+
# AdaptFormer model fine-tuned on LEVIR-CD
|
10 |
+
|
11 |
+
AdaptFormer model fine-tuned on LEVIR-CD at resolution 512x512. It was introduced in the paper [AdaptFormer: An Adaptive Hierarchical Semantic Approach for Change Detection on Remote Sensing Images](https://ieeexplore.ieee.org/document/10497147) by Pang et al. and first released in [this repository](https://github.com/aigzhusmart/AdaptFormer).
|
12 |
+
|
13 |
+
## Model description
|
14 |
+
|
15 |
+
AdaptFormer, uniquely designed to adaptively interpret hierarchical semantics. Instead of a one-size-fits-all approach, it strategizes differently across three semantic depths: employing straightforward operations for shallow semantics, assimilating spatial data for medium semantics to emphasize detailed interregional changes, and integrating cascaded depthwise attention for in-depth semantics, focusing on high-level representations
|
16 |
+
|
17 |
+
Here is how to use this model to classify an image:
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import AutoImageProcessor, AutoModel
|
21 |
+
from PIL import Image
|
22 |
+
import requests
|
23 |
+
|
24 |
+
image_processor = AutoImageProcessor.from_pretrained("deepang/adaptformer-LEVIR-CD")
|
25 |
+
model = AutoModel.from_pretrained("deepang/adaptformer-LEVIR-CD")
|
26 |
+
|
27 |
+
image_A = Image.open(requests.get('https://raw.githubusercontent.com/aigzhusmart/AdaptFormer/main/figures/test_2_1_A.png', stream=True).raw)
|
28 |
+
image_B = Image.open(requests.get('https://raw.githubusercontent.com/aigzhusmart/AdaptFormer/main/figures/test_2_1_B.png', stream=True).raw)
|
29 |
+
label = Image.open(requests.get('https://raw.githubusercontent.com/aigzhusmart/AdaptFormer/main/figures/test_2_1_label.png', stream=True).raw)
|
30 |
+
|
31 |
+
|
32 |
+
inputs = preprocessor(images=(image_A, image_B), return_tensors="pt")
|
33 |
+
outputs = adaptfromer_model(**inputs)
|
34 |
+
logits = outputs.logits # shape (batch_size, num_labels, height, width)
|
35 |
+
pred = logits.argmax(dim=1)[0]
|
36 |
+
```
|
37 |
+
|
38 |
+
### License
|
39 |
+
|
40 |
+
The license for this model can be found [here](https://github.com/aigzhusmart/AdaptFormer).
|
41 |
+
|
42 |
+
### BibTeX entry and citation info
|
43 |
+
|
44 |
+
```bibtex
|
45 |
+
@article{huang2024adaptformer,
|
46 |
+
title={AdaptFormer: An Adaptive Hierarchical Semantic Approach for Change Detection on Remote Sensing Images},
|
47 |
+
author={Huang, Teng and Hong, Yile and Pang, Yan and Liang, Jiaming and Hong, Jie and Huang, Lin and Zhang, Yuan and Jia, Yan and Savi, Patrizia},
|
48 |
+
journal={IEEE Transactions on Instrumentation and Measurement},
|
49 |
+
year={2024},
|
50 |
+
publisher={IEEE}
|
51 |
+
}
|
52 |
+
```
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"AdaptFormerForChangeDetection"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_adaptformer.AdaptFormerConfig",
|
7 |
+
"AutoModel": "modeling_adaptformer.AdaptFormerForChangeDetection",
|
8 |
+
"AutoImageProcessor": "preprocessing_adaptformer.AdaptFormerImageProcessor"
|
9 |
+
},
|
10 |
+
"depths": [
|
11 |
+
3,
|
12 |
+
3,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"embed_dims": [
|
16 |
+
64,
|
17 |
+
128,
|
18 |
+
256
|
19 |
+
],
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"mlp_ratios": [
|
22 |
+
4,
|
23 |
+
4,
|
24 |
+
4
|
25 |
+
],
|
26 |
+
"model_type": "adaptformer",
|
27 |
+
"num_channels": 3,
|
28 |
+
"num_classes": 2,
|
29 |
+
"num_heads": [
|
30 |
+
1,
|
31 |
+
2,
|
32 |
+
4
|
33 |
+
],
|
34 |
+
"semantic_loss_ignore_index": 255,
|
35 |
+
"semantic_loss_weight": [
|
36 |
+
0,
|
37 |
+
0,
|
38 |
+
0.5,
|
39 |
+
1
|
40 |
+
],
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.39.3"
|
43 |
+
}
|
configuration_adaptformer.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" AdaptFormer model configuration"""
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
|
5 |
+
|
6 |
+
class AdaptFormerConfig(PretrainedConfig):
|
7 |
+
r"""
|
8 |
+
This is the configuration class to store the configuration of a [`AdaptFormerForChangeDetection`].
|
9 |
+
It is used to instantiate an AdaptFormer model according to the specified arguments,
|
10 |
+
defining the model architecture. Instantiating a configuration with the defaults will yield a similar
|
11 |
+
configuration to that of the AdaptFormer
|
12 |
+
[deepang/adaptformer-LEVIR-CD](https://huggingface.co/deepang/adaptformer-LEVIR-CD)
|
13 |
+
architecture.
|
14 |
+
|
15 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
16 |
+
documentation from [`PretrainedConfig`] for more information.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
num_channels (`int`, *optional*, defaults to 3):
|
20 |
+
The number of input channels.
|
21 |
+
num_classes (`int`, *optional*, defaults to 2):
|
22 |
+
The number of classes.
|
23 |
+
embed_dims (`List[int]`, *optional*, defaults to `[64, 128, 256]`):
|
24 |
+
Dimension of each of the encoder blocks.
|
25 |
+
num_heads (`List[int]`, *optional*, defaults to `[1, 2, 4]`):
|
26 |
+
Number of attention heads for each attention layer in each block of the encoder.
|
27 |
+
mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
|
28 |
+
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
|
29 |
+
encoder blocks.
|
30 |
+
depths (`List[int]`, *optional*, defaults to `[3, 3, 3]`):
|
31 |
+
The number of layers in each encoder block.
|
32 |
+
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
|
33 |
+
The index that is ignored by the loss function of the semantic segmentation model.
|
34 |
+
semantic_loss_weight (`List[float]`, *optional*, defaults to `[0, 0, 0.8, 1]`):
|
35 |
+
The weight of the semantic segmentation loss.
|
36 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
37 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
38 |
+
|
39 |
+
Example:
|
40 |
+
|
41 |
+
```python
|
42 |
+
>>> from transformers import AutoModel, AutoConfig
|
43 |
+
|
44 |
+
>>> # Initializing a AdaptFormer
|
45 |
+
>>> configuration = AutoConfig.from_pretrained("deepang/adaptformer-LEVIR-CD")
|
46 |
+
|
47 |
+
>>> # Initializing a model from the deepang/adaptformer-LEVIR-CD style configuration
|
48 |
+
>>> model = AutoModel(configuration)
|
49 |
+
|
50 |
+
>>> # Accessing the model configuration
|
51 |
+
>>> configuration = model.config
|
52 |
+
```"""
|
53 |
+
|
54 |
+
model_type = "adaptformer"
|
55 |
+
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
num_channels=3,
|
59 |
+
num_classes=2,
|
60 |
+
embed_dims=[64, 128, 256],
|
61 |
+
num_heads=[1, 2, 4],
|
62 |
+
mlp_ratios=[4, 4, 4],
|
63 |
+
depths=[3, 3, 3],
|
64 |
+
semantic_loss_ignore_index=255,
|
65 |
+
semantic_loss_weight=[0, 0, 0.5, 1],
|
66 |
+
initializer_range=0.02,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
self.num_channels = num_channels
|
70 |
+
self.embed_dims = embed_dims
|
71 |
+
self.num_heads = num_heads
|
72 |
+
self.num_heads = num_heads
|
73 |
+
self.mlp_ratios = mlp_ratios
|
74 |
+
self.depths = depths
|
75 |
+
self.num_classes = num_classes
|
76 |
+
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
77 |
+
self.semantic_loss_weight = semantic_loss_weight
|
78 |
+
self.initializer_range = initializer_range
|
79 |
+
|
80 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32a543900a391fcb9b974956cfc96811261f7c6ad4b6393e6907910d99b42e04
|
3 |
+
size 50178960
|
modeling_adaptformer.py
ADDED
@@ -0,0 +1,647 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch AdaptFormer model."""
|
2 |
+
|
3 |
+
import itertools
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from einops.layers.torch import Rearrange
|
10 |
+
from transformers import PreTrainedModel
|
11 |
+
from transformers.modeling_outputs import SemanticSegmenterOutput
|
12 |
+
|
13 |
+
from .configuration_adaptformer import AdaptFormerConfig
|
14 |
+
|
15 |
+
|
16 |
+
class SpatialExchange(nn.Module):
|
17 |
+
|
18 |
+
def __init__(self, p=1 / 2):
|
19 |
+
super().__init__()
|
20 |
+
assert p >= 0 and p <= 1
|
21 |
+
self.p = int(1 / p)
|
22 |
+
|
23 |
+
def forward(self, x1: torch.Tensor, x2: torch.Tensor):
|
24 |
+
_, _, _, w = x1.shape
|
25 |
+
exchange_mask = torch.arange(w) % self.p == 0
|
26 |
+
|
27 |
+
out_x1 = torch.zeros_like(x1, device=x1.device)
|
28 |
+
out_x2 = torch.zeros_like(x2, device=x1.device)
|
29 |
+
out_x1[..., ~exchange_mask] = x1[..., ~exchange_mask]
|
30 |
+
out_x2[..., ~exchange_mask] = x2[..., ~exchange_mask]
|
31 |
+
out_x1[..., exchange_mask] = x2[..., exchange_mask]
|
32 |
+
out_x2[..., exchange_mask] = x1[..., exchange_mask]
|
33 |
+
|
34 |
+
return out_x1, out_x2
|
35 |
+
|
36 |
+
|
37 |
+
class ChannelExchange(nn.Module):
|
38 |
+
|
39 |
+
def __init__(self, p=1 / 2):
|
40 |
+
super().__init__()
|
41 |
+
assert p >= 0 and p <= 1
|
42 |
+
self.p = int(1 / p)
|
43 |
+
|
44 |
+
def forward(self, x1: torch.Tensor, x2: torch.Tensor):
|
45 |
+
N, c, _, _ = x1.shape
|
46 |
+
|
47 |
+
exchange_map = torch.arange(c) % self.p == 0
|
48 |
+
exchange_mask = exchange_map.unsqueeze(0).expand((N, -1))
|
49 |
+
|
50 |
+
out_x1 = torch.zeros_like(x1, device=x1.device)
|
51 |
+
out_x2 = torch.zeros_like(x2, device=x1.device)
|
52 |
+
out_x1[~exchange_mask, ...] = x1[~exchange_mask, ...]
|
53 |
+
out_x2[~exchange_mask, ...] = x2[~exchange_mask, ...]
|
54 |
+
out_x1[exchange_mask, ...] = x2[exchange_mask, ...]
|
55 |
+
out_x2[exchange_mask, ...] = x1[exchange_mask, ...]
|
56 |
+
|
57 |
+
return out_x1, out_x2
|
58 |
+
|
59 |
+
|
60 |
+
class CascadedGroupAttention(nn.Module):
|
61 |
+
r"""Cascaded Group Attention.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
dim (int): Number of input channels.
|
65 |
+
key_dim (int): The dimension for query and key.
|
66 |
+
num_heads (int): Number of attention heads.
|
67 |
+
attn_ratio (int): Multiplier for the query dim for value dimension.
|
68 |
+
resolution (int): Input resolution, correspond to the window size.
|
69 |
+
kernels (List[int]): The kernel size of the dw conv on query.
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
dim,
|
75 |
+
key_dim,
|
76 |
+
num_heads=8,
|
77 |
+
attn_ratio=4,
|
78 |
+
resolution=14,
|
79 |
+
kernels=[5, 5, 5, 5],
|
80 |
+
):
|
81 |
+
super().__init__()
|
82 |
+
self.num_heads = num_heads
|
83 |
+
self.scale = key_dim**-0.5
|
84 |
+
self.key_dim = key_dim
|
85 |
+
self.d = int(attn_ratio * key_dim)
|
86 |
+
self.attn_ratio = attn_ratio
|
87 |
+
|
88 |
+
qkvs = []
|
89 |
+
dws = []
|
90 |
+
for i in range(num_heads):
|
91 |
+
qkvs.append(
|
92 |
+
nn.Sequential(
|
93 |
+
nn.Conv2d(
|
94 |
+
dim // (num_heads),
|
95 |
+
self.key_dim * 2 + self.d,
|
96 |
+
1,
|
97 |
+
1,
|
98 |
+
0,
|
99 |
+
bias=False,
|
100 |
+
),
|
101 |
+
nn.BatchNorm2d(self.key_dim * 2 + self.d),
|
102 |
+
)
|
103 |
+
)
|
104 |
+
dws.append(
|
105 |
+
nn.Sequential(
|
106 |
+
nn.Conv2d(
|
107 |
+
self.key_dim,
|
108 |
+
self.key_dim,
|
109 |
+
kernels[i],
|
110 |
+
1,
|
111 |
+
kernels[i] // 2,
|
112 |
+
groups=self.key_dim,
|
113 |
+
bias=False,
|
114 |
+
),
|
115 |
+
nn.BatchNorm2d(self.key_dim),
|
116 |
+
)
|
117 |
+
)
|
118 |
+
|
119 |
+
self.qkvs = nn.ModuleList(qkvs)
|
120 |
+
self.dws = nn.ModuleList(dws)
|
121 |
+
self.proj = nn.Sequential(
|
122 |
+
nn.ReLU(),
|
123 |
+
nn.Conv2d(self.d * num_heads, dim, 1, 1, 0, bias=False),
|
124 |
+
nn.BatchNorm2d(dim),
|
125 |
+
)
|
126 |
+
self.act_gelu = nn.GELU()
|
127 |
+
points = list(itertools.product(range(resolution), range(resolution)))
|
128 |
+
N = len(points)
|
129 |
+
attention_offsets = {}
|
130 |
+
idxs = []
|
131 |
+
for p1 in points:
|
132 |
+
for p2 in points:
|
133 |
+
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
|
134 |
+
if offset not in attention_offsets:
|
135 |
+
attention_offsets[offset] = len(attention_offsets)
|
136 |
+
idxs.append(attention_offsets[offset])
|
137 |
+
self.attention_biases = nn.Parameter(
|
138 |
+
torch.zeros(num_heads, len(attention_offsets))
|
139 |
+
)
|
140 |
+
self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(N, N))
|
141 |
+
|
142 |
+
@torch.no_grad()
|
143 |
+
def train(self, mode=True):
|
144 |
+
super().train(mode)
|
145 |
+
if mode and hasattr(self, "ab"):
|
146 |
+
del self.ab
|
147 |
+
else:
|
148 |
+
self.ab = self.attention_biases[:, self.attention_bias_idxs]
|
149 |
+
|
150 |
+
def forward(self, x):
|
151 |
+
B, _, H, W = x.shape
|
152 |
+
trainingab = self.attention_biases[:, self.attention_bias_idxs]
|
153 |
+
feats_in = x.chunk(len(self.qkvs), dim=1)
|
154 |
+
feats_out = []
|
155 |
+
feat = feats_in[0]
|
156 |
+
for i, qkv in enumerate(self.qkvs):
|
157 |
+
if i > 0:
|
158 |
+
feat = feat + feats_in[i]
|
159 |
+
feat = qkv(feat)
|
160 |
+
q, k, v = feat.view(B, -1, H, W).split(
|
161 |
+
[self.key_dim, self.key_dim, self.d], dim=1
|
162 |
+
)
|
163 |
+
q = self.act_gelu(self.dws[i](q)) + q
|
164 |
+
q, k, v = q.flatten(2), k.flatten(2), v.flatten(2)
|
165 |
+
attn = (q.transpose(-2, -1) @ k) * self.scale + (
|
166 |
+
trainingab[i] if self.training else self.ab[i].to(x.device)
|
167 |
+
)
|
168 |
+
attn = attn.softmax(dim=-1)
|
169 |
+
feat = (v @ attn.transpose(-2, -1)).view(B, self.d, H, W)
|
170 |
+
feats_out.append(feat)
|
171 |
+
x = self.proj(torch.cat(feats_out, 1))
|
172 |
+
return x
|
173 |
+
|
174 |
+
|
175 |
+
class LocalWindowAttention(nn.Module):
|
176 |
+
r"""Local Window Attention.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
dim (int): Number of input channels.
|
180 |
+
key_dim (int): The dimension for query and key.
|
181 |
+
num_heads (int): Number of attention heads.
|
182 |
+
attn_ratio (int): Multiplier for the query dim for value dimension.
|
183 |
+
resolution (int): Input resolution.
|
184 |
+
window_resolution (int): Local window resolution.
|
185 |
+
kernels (List[int]): The kernel size of the dw conv on query.
|
186 |
+
"""
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
dim,
|
191 |
+
key_dim,
|
192 |
+
num_heads=8,
|
193 |
+
attn_ratio=4,
|
194 |
+
resolution=14,
|
195 |
+
window_resolution=7,
|
196 |
+
kernels=[5, 5, 5, 5],
|
197 |
+
):
|
198 |
+
super().__init__()
|
199 |
+
self.dim = dim
|
200 |
+
self.num_heads = num_heads
|
201 |
+
self.resolution = resolution
|
202 |
+
assert window_resolution > 0, "window_size must be greater than 0"
|
203 |
+
self.window_resolution = window_resolution
|
204 |
+
|
205 |
+
window_resolution = min(window_resolution, resolution)
|
206 |
+
self.attn = CascadedGroupAttention(
|
207 |
+
dim,
|
208 |
+
key_dim,
|
209 |
+
num_heads,
|
210 |
+
attn_ratio=attn_ratio,
|
211 |
+
resolution=window_resolution,
|
212 |
+
kernels=kernels,
|
213 |
+
)
|
214 |
+
|
215 |
+
def forward(self, x):
|
216 |
+
H = W = self.resolution
|
217 |
+
B, C, H_, W_ = x.shape
|
218 |
+
# Only check this for classifcation models
|
219 |
+
assert (
|
220 |
+
H == H_ and W == W_
|
221 |
+
), "input feature has wrong size, expect {}, got {}".format((H, W), (H_, W_))
|
222 |
+
|
223 |
+
if H <= self.window_resolution and W <= self.window_resolution:
|
224 |
+
x = self.attn(x)
|
225 |
+
else:
|
226 |
+
x = x.permute(0, 2, 3, 1)
|
227 |
+
pad_b = (
|
228 |
+
self.window_resolution - H % self.window_resolution
|
229 |
+
) % self.window_resolution
|
230 |
+
pad_r = (
|
231 |
+
self.window_resolution - W % self.window_resolution
|
232 |
+
) % self.window_resolution
|
233 |
+
padding = pad_b > 0 or pad_r > 0
|
234 |
+
|
235 |
+
if padding:
|
236 |
+
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
|
237 |
+
|
238 |
+
pH, pW = H + pad_b, W + pad_r
|
239 |
+
nH = pH // self.window_resolution
|
240 |
+
nW = pW // self.window_resolution
|
241 |
+
x = (
|
242 |
+
x.view(B, nH, self.window_resolution, nW, self.window_resolution, C)
|
243 |
+
.transpose(2, 3)
|
244 |
+
.reshape(B * nH * nW, self.window_resolution, self.window_resolution, C)
|
245 |
+
.permute(0, 3, 1, 2)
|
246 |
+
)
|
247 |
+
x = self.attn(x)
|
248 |
+
x = (
|
249 |
+
x.permute(0, 2, 3, 1)
|
250 |
+
.view(B, nH, nW, self.window_resolution, self.window_resolution, C)
|
251 |
+
.transpose(2, 3)
|
252 |
+
.reshape(B, pH, pW, C)
|
253 |
+
)
|
254 |
+
if padding:
|
255 |
+
x = x[:, :H, :W].contiguous()
|
256 |
+
x = x.permute(0, 3, 1, 2)
|
257 |
+
return x
|
258 |
+
|
259 |
+
|
260 |
+
class LocalAgg(nn.Module):
|
261 |
+
|
262 |
+
def __init__(self, channels):
|
263 |
+
super(LocalAgg, self).__init__()
|
264 |
+
self.bn = nn.BatchNorm2d(channels)
|
265 |
+
self.pointwise_conv_0 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
|
266 |
+
self.depthwise_conv = nn.Conv2d(
|
267 |
+
channels, channels, padding=1, kernel_size=3, groups=channels, bias=False
|
268 |
+
)
|
269 |
+
self.pointwise_prenorm_1 = nn.BatchNorm2d(channels)
|
270 |
+
self.pointwise_conv_1 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
|
271 |
+
|
272 |
+
def forward(self, x):
|
273 |
+
x = self.bn(x)
|
274 |
+
x = self.pointwise_conv_0(x)
|
275 |
+
x = self.depthwise_conv(x)
|
276 |
+
x = self.pointwise_prenorm_1(x)
|
277 |
+
x = self.pointwise_conv_1(x)
|
278 |
+
return x
|
279 |
+
|
280 |
+
|
281 |
+
class Mlp(nn.Module):
|
282 |
+
|
283 |
+
def __init__(self, channels, mlp_ratio):
|
284 |
+
super(Mlp, self).__init__()
|
285 |
+
self.up_proj = nn.Conv2d(
|
286 |
+
channels, channels * mlp_ratio, kernel_size=1, bias=False
|
287 |
+
)
|
288 |
+
self.down_proj = nn.Conv2d(
|
289 |
+
channels * mlp_ratio, channels, kernel_size=1, bias=False
|
290 |
+
)
|
291 |
+
|
292 |
+
def forward(self, x):
|
293 |
+
return self.down_proj(F.gelu(self.up_proj(x)))
|
294 |
+
|
295 |
+
|
296 |
+
class LocalMerge(nn.Module):
|
297 |
+
def __init__(self, channels, r, heads, resolution, partial=False):
|
298 |
+
super(LocalMerge, self).__init__()
|
299 |
+
self.partial = partial
|
300 |
+
self.cpe1 = nn.Conv2d(
|
301 |
+
channels, channels, kernel_size=3, padding=1, groups=channels, bias=False
|
302 |
+
)
|
303 |
+
self.local_agg = LocalAgg(channels)
|
304 |
+
self.mlp1 = Mlp(channels, r)
|
305 |
+
if partial:
|
306 |
+
self.cpe2 = nn.Conv2d(
|
307 |
+
channels,
|
308 |
+
channels,
|
309 |
+
kernel_size=3,
|
310 |
+
padding=1,
|
311 |
+
groups=channels,
|
312 |
+
bias=False,
|
313 |
+
)
|
314 |
+
self.attn = LocalWindowAttention(
|
315 |
+
channels,
|
316 |
+
16,
|
317 |
+
heads,
|
318 |
+
attn_ratio=r,
|
319 |
+
resolution=resolution,
|
320 |
+
window_resolution=7,
|
321 |
+
kernels=[5, 5, 5, 5],
|
322 |
+
)
|
323 |
+
self.mlp2 = Mlp(channels, r)
|
324 |
+
|
325 |
+
def forward(self, x):
|
326 |
+
x = self.cpe1(x) + x
|
327 |
+
x = self.local_agg(x) + x
|
328 |
+
x = self.mlp1(x) + x
|
329 |
+
if self.partial:
|
330 |
+
x = self.cpe2(x) + x
|
331 |
+
x = self.attn(x) + x
|
332 |
+
x = self.mlp2(x) + x
|
333 |
+
return x
|
334 |
+
|
335 |
+
|
336 |
+
class AdaptFormerEncoderBlock(nn.Module):
|
337 |
+
def __init__(
|
338 |
+
self, in_chans, embed_dim, num_head, mlp_ratio, depth, resolution, partial
|
339 |
+
):
|
340 |
+
super().__init__()
|
341 |
+
|
342 |
+
self.down = nn.Sequential(
|
343 |
+
nn.Conv2d(in_chans, embed_dim, kernel_size=2, stride=2),
|
344 |
+
nn.GroupNorm(num_groups=1, num_channels=embed_dim),
|
345 |
+
)
|
346 |
+
|
347 |
+
self.block = nn.Sequential(
|
348 |
+
*[
|
349 |
+
LocalMerge(
|
350 |
+
channels=embed_dim,
|
351 |
+
r=mlp_ratio,
|
352 |
+
heads=num_head,
|
353 |
+
resolution=resolution,
|
354 |
+
partial=partial,
|
355 |
+
)
|
356 |
+
for _ in range(depth)
|
357 |
+
]
|
358 |
+
)
|
359 |
+
|
360 |
+
def forward(self, x: torch.Tensor):
|
361 |
+
return self.block(self.down(x))
|
362 |
+
|
363 |
+
|
364 |
+
class ChangeDetectionHaed(nn.Module):
|
365 |
+
def __init__(self, embedding_dim, in_channels, num_classes):
|
366 |
+
super(ChangeDetectionHaed, self).__init__()
|
367 |
+
self.in_proj = nn.Sequential(
|
368 |
+
nn.Conv2d(
|
369 |
+
in_channels=embedding_dim * len(in_channels),
|
370 |
+
out_channels=embedding_dim,
|
371 |
+
kernel_size=1,
|
372 |
+
),
|
373 |
+
nn.BatchNorm2d(embedding_dim),
|
374 |
+
nn.ConvTranspose2d(embedding_dim, embedding_dim, 4, stride=2, padding=1),
|
375 |
+
)
|
376 |
+
|
377 |
+
self.conv1 = nn.Conv2d(embedding_dim, embedding_dim, 3, 1, 1)
|
378 |
+
self.conv2 = nn.Conv2d(embedding_dim, embedding_dim, 3, 1, 1)
|
379 |
+
|
380 |
+
self.out = nn.Conv2d(embedding_dim, num_classes, 3, 1, 1)
|
381 |
+
|
382 |
+
def forward(self, x: torch.Tensor):
|
383 |
+
x = self.in_proj(x)
|
384 |
+
x = self.conv2(F.relu(self.conv1(x))) * 0.1 + x
|
385 |
+
return self.out(x)
|
386 |
+
|
387 |
+
|
388 |
+
class AdaptFormerDecoder(nn.Module):
|
389 |
+
|
390 |
+
def __init__(
|
391 |
+
self,
|
392 |
+
config: AdaptFormerConfig,
|
393 |
+
):
|
394 |
+
super(AdaptFormerDecoder, self).__init__()
|
395 |
+
|
396 |
+
self.in_channels = config.embed_dims
|
397 |
+
self.embedding_dim = config.embed_dims[-1]
|
398 |
+
|
399 |
+
self.linear_emb_layers = nn.ModuleList(
|
400 |
+
[
|
401 |
+
nn.Sequential(
|
402 |
+
Rearrange("n c ... -> n (...) c"),
|
403 |
+
nn.Linear(in_dim, self.embedding_dim),
|
404 |
+
)
|
405 |
+
for in_dim in self.in_channels
|
406 |
+
]
|
407 |
+
)
|
408 |
+
|
409 |
+
self.diff_layers = nn.ModuleList(
|
410 |
+
[
|
411 |
+
nn.Sequential(
|
412 |
+
nn.Conv2d(2 * self.embedding_dim, self.embedding_dim, 3, 1, 1),
|
413 |
+
nn.ReLU(),
|
414 |
+
nn.BatchNorm2d(self.embedding_dim),
|
415 |
+
nn.Conv2d(self.embedding_dim, self.embedding_dim, 3, 1, 1),
|
416 |
+
nn.ReLU(),
|
417 |
+
)
|
418 |
+
for _ in range(3)
|
419 |
+
]
|
420 |
+
)
|
421 |
+
|
422 |
+
self.prediction_layers = nn.ModuleList(
|
423 |
+
[
|
424 |
+
nn.Sequential(
|
425 |
+
nn.Conv2d(self.embedding_dim, config.num_classes, 3, 1, 1),
|
426 |
+
nn.ReLU(),
|
427 |
+
nn.BatchNorm2d(config.num_classes),
|
428 |
+
nn.Conv2d(config.num_classes, config.num_classes, 3, 1, 1),
|
429 |
+
)
|
430 |
+
for _ in range(3)
|
431 |
+
]
|
432 |
+
)
|
433 |
+
|
434 |
+
self.head = ChangeDetectionHaed(
|
435 |
+
self.embedding_dim, self.in_channels, config.num_classes
|
436 |
+
)
|
437 |
+
|
438 |
+
def forward(self, pixel_valuesA, pixel_valuesB):
|
439 |
+
N, _, H, W = pixel_valuesA[0].shape
|
440 |
+
|
441 |
+
# c3
|
442 |
+
pixel_values_c3 = torch.cat([pixel_valuesA[2], pixel_valuesB[2]], dim=0)
|
443 |
+
|
444 |
+
_c3_1, _c3_2 = torch.chunk(
|
445 |
+
self.linear_emb_layers[2](pixel_values_c3).permute(0, 2, 1), 2
|
446 |
+
)
|
447 |
+
_c3_1 = _c3_1.reshape(N, -1, pixel_values_c3.shape[2], pixel_values_c3.shape[3])
|
448 |
+
_c3_2 = _c3_2.reshape(N, -1, pixel_values_c3.shape[2], pixel_values_c3.shape[3])
|
449 |
+
|
450 |
+
_c3 = self.diff_layers[2](torch.cat((_c3_1, _c3_2), dim=1))
|
451 |
+
|
452 |
+
p_c3 = self.prediction_layers[2](_c3)
|
453 |
+
_c3_up = F.interpolate(_c3, (H, W), mode="bilinear", align_corners=False)
|
454 |
+
|
455 |
+
# c2
|
456 |
+
pixel_values_c2 = torch.cat([pixel_valuesA[1], pixel_valuesB[1]], dim=0)
|
457 |
+
_c2_1, _c2_2 = torch.chunk(
|
458 |
+
self.linear_emb_layers[1](pixel_values_c2).permute(0, 2, 1), 2
|
459 |
+
)
|
460 |
+
_c2_1 = _c2_1.reshape(N, -1, pixel_values_c2.shape[2], pixel_values_c2.shape[3])
|
461 |
+
_c2_2 = _c2_2.reshape(N, -1, pixel_values_c2.shape[2], pixel_values_c2.shape[3])
|
462 |
+
_c2 = self.diff_layers[1](torch.cat((_c2_1, _c2_2), dim=1)) + F.interpolate(
|
463 |
+
_c3, scale_factor=2, mode="bilinear"
|
464 |
+
)
|
465 |
+
p_c2 = self.prediction_layers[1](_c2)
|
466 |
+
_c2_up = F.interpolate(_c2, (H, W), mode="bilinear", align_corners=False)
|
467 |
+
|
468 |
+
# c1
|
469 |
+
pixel_values_c1 = torch.cat([pixel_valuesA[0], pixel_valuesB[0]], dim=0)
|
470 |
+
_c1_1, _c1_2 = torch.chunk(
|
471 |
+
self.linear_emb_layers[0](pixel_values_c1).permute(0, 2, 1), 2
|
472 |
+
)
|
473 |
+
_c1_1 = _c1_1.reshape(N, -1, pixel_values_c1.shape[2], pixel_values_c1.shape[3])
|
474 |
+
_c1_2 = _c1_2.reshape(N, -1, pixel_values_c1.shape[2], pixel_values_c1.shape[3])
|
475 |
+
_c1 = self.diff_layers[0](torch.cat((_c1_1, _c1_2), dim=1)) + F.interpolate(
|
476 |
+
_c2, scale_factor=2, mode="bilinear"
|
477 |
+
)
|
478 |
+
p_c1 = self.prediction_layers[0](_c1)
|
479 |
+
|
480 |
+
cp = self.head(torch.cat((_c3_up, _c2_up, _c1), dim=1))
|
481 |
+
|
482 |
+
return [p_c3, p_c2, p_c1, cp]
|
483 |
+
|
484 |
+
|
485 |
+
class AdaptFormerPreTrainedModel(PreTrainedModel):
|
486 |
+
"""
|
487 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
488 |
+
models.
|
489 |
+
"""
|
490 |
+
config_class = AdaptFormerConfig
|
491 |
+
base_model_prefix = "adaptformer"
|
492 |
+
|
493 |
+
def _init_weights(self, m):
|
494 |
+
"""Initialize the weights"""
|
495 |
+
if isinstance(m, nn.Linear):
|
496 |
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
497 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
498 |
+
nn.init.constant_(m.bias, 0)
|
499 |
+
elif isinstance(m, nn.LayerNorm):
|
500 |
+
nn.init.constant_(m.bias, 0)
|
501 |
+
nn.init.constant_(m.weight, 1.0)
|
502 |
+
elif isinstance(m, nn.Conv2d):
|
503 |
+
import math
|
504 |
+
|
505 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
506 |
+
fan_out //= m.groups
|
507 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
508 |
+
if m.bias is not None:
|
509 |
+
m.bias.data.zero_()
|
510 |
+
|
511 |
+
|
512 |
+
class AdaptFormerForChangeDetection(AdaptFormerPreTrainedModel):
|
513 |
+
"""
|
514 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
515 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
516 |
+
behavior.
|
517 |
+
|
518 |
+
Parameters:
|
519 |
+
config ([`AdaptFormerConfig`]): Model configuration class with all the parameters of the model.
|
520 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
521 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
522 |
+
"""
|
523 |
+
|
524 |
+
def __init__(
|
525 |
+
self,
|
526 |
+
config: AdaptFormerConfig,
|
527 |
+
):
|
528 |
+
super().__init__(config)
|
529 |
+
self.config = config
|
530 |
+
self.block1 = AdaptFormerEncoderBlock(
|
531 |
+
in_chans=config.num_channels,
|
532 |
+
embed_dim=config.embed_dims[0],
|
533 |
+
num_head=config.num_heads[0],
|
534 |
+
mlp_ratio=config.mlp_ratios[0],
|
535 |
+
depth=config.depths[0],
|
536 |
+
resolution=config.embed_dims[2] // 2,
|
537 |
+
partial=False,
|
538 |
+
)
|
539 |
+
self.block2 = AdaptFormerEncoderBlock(
|
540 |
+
in_chans=config.embed_dims[0],
|
541 |
+
embed_dim=config.embed_dims[1],
|
542 |
+
num_head=config.num_heads[1],
|
543 |
+
mlp_ratio=config.mlp_ratios[1],
|
544 |
+
depth=config.depths[1],
|
545 |
+
resolution=config.embed_dims[1] // 2,
|
546 |
+
partial=False,
|
547 |
+
)
|
548 |
+
self.block3 = AdaptFormerEncoderBlock(
|
549 |
+
in_chans=config.embed_dims[1],
|
550 |
+
embed_dim=config.embed_dims[2],
|
551 |
+
num_head=config.num_heads[2],
|
552 |
+
mlp_ratio=config.mlp_ratios[2],
|
553 |
+
depth=config.depths[2],
|
554 |
+
resolution=config.embed_dims[0] // 2,
|
555 |
+
partial=True,
|
556 |
+
)
|
557 |
+
self.spatialex = SpatialExchange()
|
558 |
+
self.channelex = ChannelExchange()
|
559 |
+
|
560 |
+
self.decoder = AdaptFormerDecoder(config=config)
|
561 |
+
|
562 |
+
# Initialize weights and apply final processing
|
563 |
+
self.post_init()
|
564 |
+
|
565 |
+
def forward(
|
566 |
+
self,
|
567 |
+
pixel_valuesA: torch.Tensor,
|
568 |
+
pixel_valuesB: torch.Tensor,
|
569 |
+
labels: Optional[torch.Tensor] = None,
|
570 |
+
output_hidden_states: Optional[bool] = None,
|
571 |
+
return_dict: Optional[bool] = None,
|
572 |
+
):
|
573 |
+
r"""
|
574 |
+
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
575 |
+
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
|
576 |
+
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
|
577 |
+
|
578 |
+
Returns:
|
579 |
+
|
580 |
+
Examples:
|
581 |
+
|
582 |
+
```python
|
583 |
+
>>> from transformers import AutoImageProcessor, AutoModel
|
584 |
+
>>> from PIL import Image
|
585 |
+
>>> import requests
|
586 |
+
|
587 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("deepang/adaptformer-LEVIR-CD")
|
588 |
+
>>> model = AutoModel.from_pretrained("deepang/adaptformer-LEVIR-CD")
|
589 |
+
|
590 |
+
>>> image_A = Image.open(requests.get('https://raw.githubusercontent.com/aigzhusmart/AdaptFormer/main/figures/test_2_1_A.png', stream=True).raw)
|
591 |
+
>>> image_B = Image.open(requests.get('https://raw.githubusercontent.com/aigzhusmart/AdaptFormer/main/figures/test_2_1_B.png', stream=True).raw)
|
592 |
+
>>> label = Image.open(requests.get('https://raw.githubusercontent.com/aigzhusmart/AdaptFormer/main/figures/test_2_1_label.png', stream=True).raw)
|
593 |
+
|
594 |
+
>>> with torch.no_grad():
|
595 |
+
>>> inputs = preprocessor(images=(image_A, image_B), return_tensors="pt")
|
596 |
+
>>> outputs = adaptfromer_model(**inputs)
|
597 |
+
>>> logits = outputs.logits.cpu()
|
598 |
+
>>> pred = logits.argmax(dim=1)[0]
|
599 |
+
```"""
|
600 |
+
return_dict = (
|
601 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
602 |
+
)
|
603 |
+
x1_1, x2_1 = torch.chunk(
|
604 |
+
self.block1(torch.cat((pixel_valuesA, pixel_valuesB), dim=0)), 2
|
605 |
+
)
|
606 |
+
|
607 |
+
x1_2, x2_2 = torch.chunk(
|
608 |
+
self.block2(torch.cat(self.spatialex(x1_1, x2_1), dim=0)), 2
|
609 |
+
)
|
610 |
+
|
611 |
+
x1_3, x2_3 = torch.chunk(
|
612 |
+
self.block3(torch.cat(self.channelex(x1_2, x2_2), dim=0)), 2
|
613 |
+
)
|
614 |
+
|
615 |
+
hidden_states = self.decoder([x1_1, x1_2, x1_3], [x2_1, x2_2, x2_3])
|
616 |
+
|
617 |
+
loss = None
|
618 |
+
if labels is not None:
|
619 |
+
loss = 0
|
620 |
+
for i, hidden_state in enumerate(hidden_states):
|
621 |
+
upsampled_logits = F.interpolate(
|
622 |
+
hidden_state,
|
623 |
+
size=labels.shape[-2:],
|
624 |
+
mode="bilinear",
|
625 |
+
align_corners=False,
|
626 |
+
)
|
627 |
+
loss += (
|
628 |
+
F.cross_entropy(
|
629 |
+
upsampled_logits,
|
630 |
+
labels.long(),
|
631 |
+
ignore_index=self.config.semantic_loss_ignore_index,
|
632 |
+
)
|
633 |
+
* self.config.semantic_loss_weight[i]
|
634 |
+
)
|
635 |
+
|
636 |
+
if not return_dict:
|
637 |
+
if output_hidden_states:
|
638 |
+
output = (hidden_states[-1], hidden_states)
|
639 |
+
else:
|
640 |
+
output = (hidden_states[-1],)
|
641 |
+
return ((loss,) + output) if loss is not None else output
|
642 |
+
|
643 |
+
return SemanticSegmenterOutput(
|
644 |
+
loss=loss,
|
645 |
+
logits=hidden_states[-1],
|
646 |
+
hidden_states=hidden_states if output_hidden_states else None,
|
647 |
+
)
|
preprocessing_adaptformer.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
from transformers import ViTImageProcessor
|
4 |
+
from transformers.image_processing_utils import BatchFeature
|
5 |
+
from transformers.image_utils import ImageInput
|
6 |
+
|
7 |
+
|
8 |
+
class AdaptFormerImageProcessor(ViTImageProcessor):
|
9 |
+
r"""
|
10 |
+
Constructs a AdaptFormer image processor.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
14 |
+
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
|
15 |
+
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
|
16 |
+
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
|
17 |
+
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
|
18 |
+
method.
|
19 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
20 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
|
21 |
+
`preprocess` method.
|
22 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
23 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
24 |
+
parameter in the `preprocess` method.
|
25 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
26 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
27 |
+
`preprocess` method.
|
28 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
29 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
30 |
+
method.
|
31 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
32 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
33 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
34 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
35 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
36 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, *args, **kwargs):
|
40 |
+
super().__init__(*args, **kwargs)
|
41 |
+
|
42 |
+
def preprocess(
|
43 |
+
self,
|
44 |
+
images: Tuple[ImageInput, ImageInput],
|
45 |
+
**kwargs,
|
46 |
+
) -> BatchFeature:
|
47 |
+
"""
|
48 |
+
Preprocess an image or batch of images.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
images (`Tuple[ImageInput, ImageInput]`):
|
52 |
+
Image Tuple to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
53 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
54 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
55 |
+
Whether to resize the image.
|
56 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
57 |
+
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
|
58 |
+
resizing.
|
59 |
+
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
|
60 |
+
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
|
61 |
+
an effect if `do_resize` is set to `True`.
|
62 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
63 |
+
Whether to rescale the image values between [0 - 1].
|
64 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
65 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
66 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
67 |
+
Whether to normalize the image.
|
68 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
69 |
+
Image mean to use if `do_normalize` is set to `True`.
|
70 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
71 |
+
Image standard deviation to use if `do_normalize` is set to `True`.
|
72 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
73 |
+
The type of tensors to return. Can be one of:
|
74 |
+
- Unset: Return a list of `np.ndarray`.
|
75 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
76 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
77 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
78 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
79 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
80 |
+
The channel dimension format for the output image. Can be one of:
|
81 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
82 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
83 |
+
- Unset: Use the channel dimension format of the input image.
|
84 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
85 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
86 |
+
from the input image. Can be one of:
|
87 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
88 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
89 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
90 |
+
"""
|
91 |
+
imagesA, imagesB = images
|
92 |
+
feature_A = super().preprocess(imagesA, **kwargs)
|
93 |
+
feature_B = super().preprocess(imagesB, **kwargs)
|
94 |
+
|
95 |
+
data = {
|
96 |
+
"pixel_valuesA": feature_A["pixel_values"],
|
97 |
+
"pixel_valuesB": feature_B["pixel_values"],
|
98 |
+
}
|
99 |
+
return BatchFeature(data=data, tensor_type=kwargs.pop("return_tensors", None))
|
preprocessor_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "preprocessing_adaptformer.AdaptFormerImageProcessor"
|
4 |
+
},
|
5 |
+
"size": 256,
|
6 |
+
"do_center_crop": false,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.485,
|
13 |
+
0.456,
|
14 |
+
0.406
|
15 |
+
],
|
16 |
+
"image_processor_type": "AdaptFormerImageProcessor",
|
17 |
+
"image_std": [
|
18 |
+
0.229,
|
19 |
+
0.224,
|
20 |
+
0.225
|
21 |
+
],
|
22 |
+
"resample": 3
|
23 |
+
}
|