File size: 6,131 Bytes
4fb0bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import json
import os
from collections import defaultdict
import random

from transformers import AutoTokenizer


def add_marker_tokens(tokenizer, ner_labels):
    new_tokens = ['<START>', '<END>']
    for label in ner_labels:
        new_tokens.append('<START=%s>'%label)
        new_tokens.append('<END=%s>'%label)
    tokenizer.add_tokens(new_tokens)
    print('# vocab after adding markers: %d'%len(tokenizer))


def tokenize_sentences(ext, tokenizer, special_tokens, rel_file):
    rel_indices = {}
    arg_indices = {}
    label_ids = []

    def get_special_token(w):
        if w not in special_tokens:
            special_tokens[w] = ('<' + w + '>').lower()
        return special_tokens[w]

    cls = tokenizer.cls_token
    sep = tokenizer.sep_token
    wordpiece_tokens = [cls]
    wordpiece_tokens_index = []
    cur_index = len(wordpiece_tokens)

    Argument_START_NER = get_special_token("START=Argument")
    Argument_END_NER = get_special_token("END=Argument")
    Relation_START_NER = get_special_token("START=Relation")
    Relation_END_NER = get_special_token("END=Relation")

    ent2offset = {}
    for ent in ext['entityMentions']:
        ent2offset[ent['emId']] = ent['span_ids']

    argument_start_ids = []
    argument_end_ids = []
    relation_start_ids = []
    # add negative relations as well (label = 0)
    relation_end_ids = []
    entity_set = set()
    relation2entity = defaultdict(set)
    for rel in ext['relationMentions']:
        relation_span = ent2offset[rel['arg1']['emId']]
        relation_start_ids.append(relation_span[0])
        relation_end_ids.append(relation_span[-1])
        argument_span = ent2offset[rel['arg2']['emId']]
        argument_start_ids.append(argument_span[0])
        argument_end_ids.append(argument_span[-1])
        label_ids.append(rel_file["id"][rel['label']])
        # add negative sampling
        relation2entity[relation_start_ids[-1]].add(argument_start_ids[-1])
        entity_set.add(argument_start_ids[-1])

    for i, token in enumerate(ext['sentence'].split(' ')):
        if i in relation_start_ids:
            rel_indices[i] = len(wordpiece_tokens)
            wordpiece_tokens.append(Relation_START_NER)
            wordpiece_tokens_index.append([cur_index, cur_index + 1])
            cur_index += 1
        if i in argument_start_ids:
            arg_indices[i] = len(wordpiece_tokens)
            wordpiece_tokens.append(Argument_START_NER)
            wordpiece_tokens_index.append([cur_index, cur_index + 1])
            cur_index += 1

        tokenized_token = list(tokenizer.tokenize(token))
        wordpiece_tokens.extend(tokenized_token)
        wordpiece_tokens_index.append([cur_index, cur_index + len(tokenized_token)])
        cur_index += len(tokenized_token)

        if i in relation_end_ids:
            wordpiece_tokens.append(Relation_END_NER)
            wordpiece_tokens_index.append([cur_index, cur_index + 1])
            cur_index += 1
        if i in argument_end_ids:
            wordpiece_tokens.append(Argument_END_NER)
            wordpiece_tokens_index.append([cur_index, cur_index + 1])
            cur_index += 1

    wordpiece_tokens.append(sep)
    wordpiece_segment_ids = [1] * (len(wordpiece_tokens))
    assert len(argument_start_ids) == len(relation_start_ids)
    assert len(argument_start_ids) == len(label_ids)

    # add negative relations with label 0
    for rel, args in relation2entity.items():
        negative_args = list(entity_set.difference(args))
        for i in range(len(negative_args) // 3):
            arg_index = random.randint(0, len(negative_args) - 1)
            relation_start_ids.append(rel)
            argument_start_ids.append(negative_args[arg_index])
            label_ids.append(0)

    return {
        'sentId': ext['sentId'],
        'sentText': ext['sentence'],
        'entityMentions': ext['entityMentions'],
        'relationMentions': ext['relationMentions'],
        'extractionMentions': ext['extractionMentions'],
        'labelIds': label_ids,
        'relationIds': [rel_indices[r] for r in relation_start_ids],
        'argumentIds': [arg_indices[a] for a in argument_start_ids],
        'wordpieceSentText': " ".join(wordpiece_tokens),
        'wordpieceTokensIndex': wordpiece_tokens_index,
        'wordpieceSegmentIds': wordpiece_segment_ids
    }


def write_dataset_to_file(dataset, dataset_path):
    print("dataset: {}, size: {}".format(dataset_path, len(dataset)))
    with open(dataset_path, 'w', encoding='utf-8') as fout:
        for idx, ext in enumerate(dataset):
            fout.write(json.dumps(ext))
            if idx != len(dataset) - 1:
                fout.write('\n')


def process(source_file, rel_file, target_file, pretrained_model):
    extractions_list = []
    auto_tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
    print("Load {} tokenizer successfully.".format(pretrained_model))

    rel_id_file = json.load(open(rel_file, 'r', encoding='utf-8'))
    add_marker_tokens(auto_tokenizer, rel_id_file["entity_text"])

    if os.path.exists('special_tokens.json'):
        with open('special_tokens.json', 'r') as f:
            special_tokens = json.load(f)
    else:
        raise FileNotFoundError

    with open(source_file, 'r', encoding='utf-8') as fin, open(target_file, 'w', encoding='utf-8') as fout:
        for line in fin:
            ext = json.loads(line.strip())
            ext_dict = tokenize_sentences(ext, auto_tokenizer, special_tokens, rel_id_file)
            extractions_list.append(ext_dict)
            fout.write(json.dumps(ext_dict))
            fout.write('\n')

    # shuffle and split to train/test/dev
    random.seed(100)
    random.shuffle(extractions_list)
    train_set = extractions_list[:len(extractions_list) - 700]
    dev_set = extractions_list[-700:-200]
    test_set = extractions_list[-200:]
    write_dataset_to_file(train_set, "train.json")
    write_dataset_to_file(dev_set, "devs.json")
    write_dataset_to_file(test_set, "test.json")


if __name__ == '__main__':
    process("../benchmark.json", "rel_file.json", "relation_model_data.json", "bert-base-uncased")