File size: 23,261 Bytes
746c674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import future
import builtins
import past
import six
import copy
from timeit import default_timer as timer
from datetime import datetime
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets
from torch.utils.data import Dataset
import decimal
import torch.onnx
import inspect
from inspect import getargspec
import os
import helpers as h
from helpers import Timer
import copy
import random
from components import *
import models
import goals
import scheduling
from goals import *
from scheduling import *
import math
import warnings
from torch.serialization import SourceChangeWarning
POINT_DOMAINS = [m for m in h.getMethods(goals) if issubclass(m, goals.Point)]
SYMETRIC_DOMAINS = [goals.Box] + POINT_DOMAINS
datasets.Imagenet12 = None
class Top(nn.Module):
def __init__(self, args, net, ty = Point):
super(Top, self).__init__()
self.net = net
self.ty = ty
self.w = args.width
self.global_num = 0
self.getSpec = getattr(self, args.spec)
self.sub_batch_size = args.sub_batch_size
self.curve_width = args.curve_width
self.regularize = args.regularize
self.speedCount = 0
self.speed = 0.0
def addSpeed(self, s):
self.speed = (s + self.speed * self.speedCount) / (self.speedCount + 1)
self.speedCount += 1
def forward(self, x):
return self.net(x)
def clip_norm(self):
self.net.clip_norm()
def boxSpec(self, x, target, **kargs):
return [(self.ty.box(x, w = self.w, model=self, target=target, untargeted=True, **kargs).to_dtype(), target)]
def curveSpec(self, x, target, **kargs):
if self.ty.__class__ in SYMETRIC_DOMAINS:
return self.boxSpec(x,target, **kargs)
batch_size = x.size()[0]
newTargs = [ None for i in range(batch_size) ]
newSpecs = [ None for i in range(batch_size) ]
bestSpecs = [ None for i in range(batch_size) ]
for i in range(batch_size):
newTarg = target[i]
newTargs[i] = newTarg
newSpec = x[i]
best_x = newSpec
best_dist = float("inf")
for j in range(batch_size):
potTarg = target[j]
potSpec = x[j]
if (not newTarg.data.equal(potTarg.data)) or i == j:
continue
curr_dist = (newSpec - potSpec).norm(1).item() # must experiment with the type of norm here
if curr_dist <= best_dist:
best_x = potSpec
newSpecs[i] = newSpec
bestSpecs[i] = best_x
new_batch_size = self.sub_batch_size
batchedTargs = h.chunks(newTargs, new_batch_size)
batchedSpecs = h.chunks(newSpecs, new_batch_size)
batchedBest = h.chunks(bestSpecs, new_batch_size)
def batch(t,s,b):
t = h.lten(t)
s = torch.stack(s)
b = torch.stack(b)
if h.use_cuda:
t.cuda()
s.cuda()
b.cuda()
m = self.ty.line(s, b, w = self.curve_width, **kargs)
return (m , t)
return [batch(t,s,b) for t,s,b in zip(batchedTargs, batchedSpecs, batchedBest)]
def regLoss(self):
if self.regularize is None or self.regularize <= 0.0:
return 0
reg_loss = 0
r = self.net.regularize(2)
return self.regularize * r
def aiLoss(self, dom, target, **args):
r = self(dom)
return self.regLoss() + r.loss(target = target, **args)
def printNet(self, f):
self.net.printNet(f)
# Training settings
parser = argparse.ArgumentParser(description='PyTorch DiffAI Example', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch-size', type=int, default=10, metavar='N', help='input batch size for training')
parser.add_argument('--test-first', type=h.str2bool, nargs='?', const=True, default=True, help='test first')
parser.add_argument('--test-freq', type=int, default=1, metavar='N', help='number of epochs to skip before testing')
parser.add_argument('--test-batch-size', type=int, default=10, metavar='N', help='input batch size for testing')
parser.add_argument('--sub-batch-size', type=int, default=3, metavar='N', help='input batch size for curve specs')
parser.add_argument('--custom-schedule', type=str, default="", metavar='net', help='Learning rate scheduling for lr-multistep. Defaults to [200,250,300] for CIFAR10 and [15,25] for everything else.')
parser.add_argument('--test', type=str, default=None, metavar='net', help='Saved net to use, in addition to any other nets you specify with -n')
parser.add_argument('--update-test-net', type=h.str2bool, nargs='?', const=True, default=False, help="should update test net")
parser.add_argument('--sgd',type=h.str2bool, nargs='?', const=True, default=False, help="use sgd instead of adam")
parser.add_argument('--onyx', type=h.str2bool, nargs='?', const=True, default=False, help="should output onyx")
parser.add_argument('--save-dot-net', type=h.str2bool, nargs='?', const=True, default=False, help="should output in .net")
parser.add_argument('--update-test-net-name', type=str, choices = h.getMethodNames(models), default=None, help="update test net name")
parser.add_argument('--normalize-layer', type=h.str2bool, nargs='?', const=True, default=True, help="should include a training set specific normalization layer")
parser.add_argument('--clip-norm', type=h.str2bool, nargs='?', const=True, default=False, help="should clip the normal and use normal decomposition for weights")
parser.add_argument('--epochs', type=int, default=1000, metavar='N', help='number of epochs to train')
parser.add_argument('--log-freq', type=int, default=10, metavar='N', help='The frequency with which log statistics are printed')
parser.add_argument('--save-freq', type=int, default=1, metavar='N', help='The frequency with which nets and images are saved, in terms of number of test passes')
parser.add_argument('--number-save-images', type=int, default=0, metavar='N', help='The number of images to save. Should be smaller than test-size.')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate')
parser.add_argument('--lr-multistep', type=h.str2bool, nargs='?', const=True, default=False, help='learning rate multistep scheduling')
parser.add_argument('--threshold', type=float, default=-0.01, metavar='TH', help='threshold for lr schedule')
parser.add_argument('--patience', type=int, default=0, metavar='PT', help='patience for lr schedule')
parser.add_argument('--factor', type=float, default=0.5, metavar='R', help='reduction multiplier for lr schedule')
parser.add_argument('--max-norm', type=float, default=10000, metavar='MN', help='the maximum norm allowed in weight distribution')
parser.add_argument('--curve-width', type=float, default=None, metavar='CW', help='the width of the curve spec')
parser.add_argument('--width', type=float, default=0.01, metavar='CW', help='the width of either the line or box')
parser.add_argument('--spec', choices = [ x for x in dir(Top) if x[-4:] == "Spec" and len(getargspec(getattr(Top, x)).args) == 3]
, default="boxSpec", help='picks which spec builder function to use for training')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed')
parser.add_argument("--use-schedule", type=h.str2bool, nargs='?',
const=True, default=False,
help="activate learning rate schedule")
parser.add_argument('-d', '--domain', sub_choices = None, action = h.SubAct
, default=[], help='picks which abstract goals to use for training', required=True)
parser.add_argument('-t', '--test-domain', sub_choices = None, action = h.SubAct
, default=[], help='picks which abstract goals to use for testing. Examples include ' + str(goals), required=True)
parser.add_argument('-n', '--net', choices = h.getMethodNames(models), action = 'append'
, default=[], help='picks which net to use for training') # one net for now
parser.add_argument('-D', '--dataset', choices = [n for (n,k) in inspect.getmembers(datasets, inspect.isclass) if issubclass(k, Dataset)]
, default="MNIST", help='picks which dataset to use.')
parser.add_argument('-o', '--out', default="out", help='picks which net to use for training')
parser.add_argument('--dont-write', type=h.str2bool, nargs='?', const=True, default=False, help='dont write anywhere if this flag is on')
parser.add_argument('--write-first', type=h.str2bool, nargs='?', const=True, default=False, help='write the initial net. Useful for comparing algorithms, a pain for testing.')
parser.add_argument('--test-size', type=int, default=2000, help='number of examples to test with')
parser.add_argument('-r', '--regularize', type=float, default=None, help='use regularization')
args = parser.parse_args()
largest_domain = max([len(h.catStrs(d)) for d in (args.domain)] )
largest_test_domain = max([len(h.catStrs(d)) for d in (args.test_domain)] )
args.log_interval = int(50000 / (args.batch_size * args.log_freq))
h.max_c_for_norm = args.max_norm
if h.use_cuda:
torch.cuda.manual_seed(1 + args.seed)
else:
torch.manual_seed(args.seed)
train_loader = h.loadDataset(args.dataset, args.batch_size, True, False)
test_loader = h.loadDataset(args.dataset, args.test_batch_size, False, False)
input_dims = train_loader.dataset[0][0].size()
num_classes = int(max(getattr(train_loader.dataset, 'train_labels' if args.dataset != "SVHN" else 'labels'))) + 1
print("input_dims: ", input_dims)
print("Num classes: ", num_classes)
vargs = vars(args)
total_batches_seen = 0
def train(epoch, models):
global total_batches_seen
for model in models:
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
total_batches_seen += 1
time = float(total_batches_seen) / len(train_loader)
if h.use_cuda:
data, target = data.cuda(), target.cuda()
for model in models:
model.global_num += data.size()[0]
timer = Timer("train a sample from " + model.name + " with " + model.ty.name, data.size()[0], False)
lossy = 0
with timer:
for s in model.getSpec(data.to_dtype(),target, time = time):
model.optimizer.zero_grad()
loss = model.aiLoss(*s, time = time, **vargs).mean(dim=0)
lossy += loss.detach().item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
for p in model.parameters():
if p is not None and torch.isnan(p).any():
print("Such nan in vals")
if p is not None and p.grad is not None and torch.isnan(p.grad).any():
print("Such nan in postmagic")
stdv = 1 / math.sqrt(h.product(p.data.shape))
p.grad = torch.where(torch.isnan(p.grad), torch.normal(mean=h.zeros(p.grad.shape), std=stdv), p.grad)
model.optimizer.step()
for p in model.parameters():
if p is not None and torch.isnan(p).any():
print("Such nan in vals after grad")
stdv = 1 / math.sqrt(h.product(p.data.shape))
p.data = torch.where(torch.isnan(p.data), torch.normal(mean=h.zeros(p.data.shape), std=stdv), p.data)
if args.clip_norm:
model.clip_norm()
for p in model.parameters():
if p is not None and torch.isnan(p).any():
raise Exception("Such nan in vals after clip")
model.addSpeed(timer.getUnitTime())
if batch_idx % args.log_interval == 0:
print(('Train Epoch {:12} {:'+ str(largest_domain) +'}: {:3} [{:7}/{} ({:.0f}%)] \tAvg sec/ex {:1.8f}\tLoss: {:.6f}').format(
model.name, model.ty.name,
epoch,
batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader),
model.speed,
lossy))
num_tests = 0
def test(models, epoch, f = None):
global num_tests
num_tests += 1
class MStat:
def __init__(self, model):
model.eval()
self.model = model
self.correct = 0
class Stat:
def __init__(self, d, dnm):
self.domain = d
self.name = dnm
self.width = 0
self.max_eps = None
self.safe = 0
self.proved = 0
self.time = 0
self.domains = [ Stat(h.parseValues(d, goals), h.catStrs(d)) for d in args.test_domain ]
model_stats = [ MStat(m) for m in models ]
num_its = 0
saved_data_target = []
for data, target in test_loader:
if num_its >= args.test_size:
break
if num_tests == 1:
saved_data_target += list(zip(list(data), list(target)))
num_its += data.size()[0]
if h.use_cuda:
data, target = data.cuda().to_dtype(), target.cuda()
for m in model_stats:
with torch.no_grad():
pred = m.model(data).vanillaTensorPart().max(1, keepdim=True)[1] # get the index of the max log-probability
m.correct += pred.eq(target.data.view_as(pred)).sum()
for stat in m.domains:
timer = Timer(shouldPrint = False)
with timer:
def calcData(data, target):
box = stat.domain.box(data, w = m.model.w, model=m.model, untargeted = True, target=target).to_dtype()
with torch.no_grad():
bs = m.model(box)
org = m.model(data).vanillaTensorPart().max(1,keepdim=True)[1]
stat.width += bs.diameter().sum().item() # sum up batch loss
stat.proved += bs.isSafe(org).sum().item()
stat.safe += bs.isSafe(target).sum().item()
# stat.max_eps += 0 # TODO: calculate max_eps
if m.model.net.neuronCount() < 5000 or stat.domain in SYMETRIC_DOMAINS:
calcData(data, target)
else:
for d,t in zip(data, target):
calcData(d.unsqueeze(0),t.unsqueeze(0))
stat.time += timer.getUnitTime()
l = num_its # len(test_loader.dataset)
for m in model_stats:
if args.lr_multistep:
m.model.lrschedule.step()
pr_corr = float(m.correct) / float(l)
if args.use_schedule:
m.model.lrschedule.step(1 - pr_corr)
h.printBoth(('Test: {:12} trained with {:'+ str(largest_domain) +'} - Avg sec/ex {:1.12f}, Accuracy: {}/{} ({:3.1f}%)').format(
m.model.name, m.model.ty.name,
m.model.speed,
m.correct, l, 100. * pr_corr), f = f)
model_stat_rec = ""
for stat in m.domains:
pr_safe = stat.safe / l
pr_proved = stat.proved / l
pr_corr_given_proved = pr_safe / pr_proved if pr_proved > 0 else 0.0
h.printBoth(("\t{:" + str(largest_test_domain)+"} - Width: {:<36.16f} Pr[Proved]={:<1.3f} Pr[Corr and Proved]={:<1.3f} Pr[Corr|Proved]={:<1.3f} {}Time = {:<7.5f}" ).format(
stat.name,
stat.width / l,
pr_proved,
pr_safe, pr_corr_given_proved,
"AvgMaxEps: {:1.10f} ".format(stat.max_eps / l) if stat.max_eps is not None else "",
stat.time), f = f)
model_stat_rec += "{}_{:1.3f}_{:1.3f}_{:1.3f}__".format(stat.name, pr_proved, pr_safe, pr_corr_given_proved)
prepedname = m.model.ty.name.replace(" ", "_").replace(",", "").replace("(", "_").replace(")", "_").replace("=", "_")
net_file = os.path.join(out_dir, m.model.name +"__" +prepedname + "_checkpoint_"+str(epoch)+"_with_{:1.3f}".format(pr_corr))
h.printBoth("\tSaving netfile: {}\n".format(net_file + ".pynet"), f = f)
if (num_tests % args.save_freq == 1 or args.save_freq == 1) and not args.dont_write and (num_tests > 1 or args.write_first):
print("Actually Saving")
torch.save(m.model.net, net_file + ".pynet")
if args.save_dot_net:
with h.mopen(args.dont_write, net_file + ".net", "w") as f2:
m.model.net.printNet(f2)
f2.close()
if args.onyx:
nn = copy.deepcopy(m.model.net)
nn.remove_norm()
torch.onnx.export(nn, h.zeros([1] + list(input_dims)), net_file + ".onyx",
verbose=False, input_names=["actual_input"] + ["param"+str(i) for i in range(len(list(nn.parameters())))], output_names=["output"])
if num_tests == 1 and not args.dont_write:
img_dir = os.path.join(out_dir, "images")
if not os.path.exists(img_dir):
os.makedirs(img_dir)
for img_num,(img,target) in zip(range(args.number_save_images), saved_data_target[:args.number_save_images]):
sz = ""
for s in img.size():
sz += str(s) + "x"
sz = sz[:-1]
img_file = os.path.join(img_dir, args.dataset + "_" + sz + "_"+ str(img_num))
if img_num == 0:
print("Saving image to: ", img_file + ".img")
with open(img_file + ".img", "w") as imgfile:
flatimg = img.view(h.product(img.size()))
for t in flatimg.cpu():
print(decimal.Decimal(float(t)).__format__("f"), file=imgfile)
with open(img_file + ".class" , "w") as imgfile:
print(int(target.item()), file=imgfile)
def createModel(net, domain, domain_name):
net_weights, net_create = net
domain.name = domain_name
net = net_create()
m = {}
for (k,v) in net_weights.state_dict().items():
m[k] = v.to_dtype()
net.load_state_dict(m)
model = Top(args, net, domain)
if args.clip_norm:
model.clip_norm()
if h.use_cuda:
model.cuda()
if args.sgd:
model.optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
else:
model.optimizer = optim.Adam(model.parameters(), lr=args.lr)
if args.lr_multistep:
model.lrschedule = optim.lr_scheduler.MultiStepLR(
model.optimizer,
gamma = 0.1,
milestones = eval(args.custom_schedule) if args.custom_schedule != "" else ([200, 250, 300] if args.dataset == "CIFAR10" else [15, 25]))
else:
model.lrschedule = optim.lr_scheduler.ReduceLROnPlateau(
model.optimizer,
'min',
patience=args.patience,
threshold= args.threshold,
min_lr=0.000001,
factor=args.factor,
verbose=True)
net.name = net_create.__name__
model.name = net_create.__name__
return model
out_dir = os.path.join(args.out, args.dataset, str(args.net)[1:-1].replace(", ","_").replace("'",""),
args.spec, "width_"+str(args.width), h.file_timestamp() )
print("Saving to:", out_dir)
if not os.path.exists(out_dir) and not args.dont_write:
os.makedirs(out_dir)
print("Starting Training with:")
with h.mopen(args.dont_write, os.path.join(out_dir, "config.txt"), "w") as f:
for k in sorted(vars(args)):
h.printBoth("\t"+k+": "+str(getattr(args,k)), f = f)
print("")
def buildNet(n):
n = n(num_classes)
if args.normalize_layer:
if args.dataset in ["MNIST"]:
n = Seq(Normalize([0.1307], [0.3081] ), n)
elif args.dataset in ["CIFAR10", "CIFAR100"]:
n = Seq(Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), n)
elif args.dataset in ["SVHN"]:
n = Seq(Normalize([0.5,0.5,0.5], [0.2, 0.2, 0.2]), n)
elif args.dataset in ["Imagenet12"]:
n = Seq(Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]), n)
n = n.infer(input_dims)
if args.clip_norm:
n.clip_norm()
return n
if not args.test is None:
test_name = None
def loadedNet():
if test_name is not None:
n = getattr(models,test_name)
n = buildNet(n)
if args.clip_norm:
n.clip_norm()
return n
else:
with warnings.catch_warnings():
warnings.simplefilter("ignore", SourceChangeWarning)
return torch.load(args.test)
net = loadedNet().double() if h.dtype == torch.float64 else loadedNet().float()
if args.update_test_net_name is not None:
test_name = args.update_test_net_name
elif args.update_test_net and '__name__' in dir(net):
test_name = net.__name__
if test_name is not None:
loadedNet.__name__ = test_name
nets = [ (net, loadedNet) ]
elif args.net == []:
raise Exception("Need to specify at least one net with either -n or --test")
else:
nets = []
for n in args.net:
m = getattr(models,n)
net_create = (lambda m: lambda: buildNet(m))(m) # why doesn't python do scoping right? This is a thunk. It is bad.
net_create.__name__ = n
net = buildNet(m)
net.__name__ = n
nets += [ (net, net_create) ]
print("Name: ", net_create.__name__)
print("Number of Neurons (relus): ", net.neuronCount())
print("Number of Parameters: ", sum([h.product(s.size()) for s in net.parameters()]))
print("Depth (relu layers): ", net.depth())
print()
net.showNet()
print()
if args.domain == []:
models = [ createModel(net, goals.Box(args.width), "Box") for net in nets]
else:
models = h.flat([[createModel(net, h.parseValues(d, goals, scheduling), h.catStrs(d)) for net in nets] for d in args.domain])
with h.mopen(args.dont_write, os.path.join(out_dir, "log.txt"), "w") as f:
startTime = timer()
for epoch in range(1, args.epochs + 1):
if f is not None:
f.flush()
if (epoch - 1) % args.test_freq == 0 and (epoch > 1 or args.test_first):
with Timer("test all models before epoch "+str(epoch), 1):
test(models, epoch, f)
if f is not None:
f.flush()
h.printBoth("Elapsed-Time: {:.2f}s\n".format(timer() - startTime), f = f)
if args.epochs <= args.test_freq:
break
with Timer("train all models in epoch", 1, f = f):
train(epoch, models)
|