File size: 37,385 Bytes
746c674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 |
import future
import builtins
import past
import six
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.autograd
from functools import reduce
try:
from . import helpers as h
except:
import helpers as h
def catNonNullErrors(op, ref_errs=None): # the way of things is ugly
def doop(er1, er2):
erS, erL = (er1, er2)
sS, sL = (erS.size()[0], erL.size()[0])
if sS == sL: # TODO: here we know we used transformers on either side which didnt introduce new error terms (this is a hack for hybrid zonotopes and doesn't work with adaptive error term adding).
return op(erS,erL)
if ref_errs is not None:
sz = ref_errs.size()[0]
else:
sz = min(sS, sL)
p1 = op(erS[:sz], erL[:sz])
erSrem = erS[sz:]
erLrem = erS[sz:]
p2 = op(erSrem, h.zeros(erSrem.shape))
p3 = op(h.zeros(erLrem.shape), erLrem)
return torch.cat((p1,p2,p3), dim=0)
return doop
def creluBoxy(dom):
if dom.errors is None:
if dom.beta is None:
return dom.new(F.relu(dom.head), None, None)
er = dom.beta
mx = F.relu(dom.head + er)
mn = F.relu(dom.head - er)
return dom.new((mn + mx) / 2, (mx - mn) / 2 , None)
aber = torch.abs(dom.errors)
sm = torch.sum(aber, 0)
if not dom.beta is None:
sm += dom.beta
mx = dom.head + sm
mn = dom.head - sm
should_box = mn.lt(0) * mx.gt(0)
gtz = dom.head.gt(0).to_dtype()
mx /= 2
newhead = h.ifThenElse(should_box, mx, gtz * dom.head)
newbeta = h.ifThenElse(should_box, mx, gtz * (dom.beta if not dom.beta is None else 0))
newerr = (1 - should_box.to_dtype()) * gtz * dom.errors
return dom.new(newhead, newbeta , newerr)
def creluBoxySound(dom):
if dom.errors is None:
if dom.beta is None:
return dom.new(F.relu(dom.head), None, None)
er = dom.beta
mx = F.relu(dom.head + er)
mn = F.relu(dom.head - er)
return dom.new((mn + mx) / 2, (mx - mn) / 2 + 2e-6 , None)
aber = torch.abs(dom.errors)
sm = torch.sum(aber, 0)
if not dom.beta is None:
sm += dom.beta
mx = dom.head + sm
mn = dom.head - sm
should_box = mn.lt(0) * mx.gt(0)
gtz = dom.head.gt(0).to_dtype()
mx /= 2
newhead = h.ifThenElse(should_box, mx, gtz * dom.head)
newbeta = h.ifThenElse(should_box, mx + 2e-6, gtz * (dom.beta if not dom.beta is None else 0))
newerr = (1 - should_box.to_dtype()) * gtz * dom.errors
return dom.new(newhead, newbeta, newerr)
def creluSwitch(dom):
if dom.errors is None:
if dom.beta is None:
return dom.new(F.relu(dom.head), None, None)
er = dom.beta
mx = F.relu(dom.head + er)
mn = F.relu(dom.head - er)
return dom.new((mn + mx) / 2, (mx - mn) / 2 , None)
aber = torch.abs(dom.errors)
sm = torch.sum(aber, 0)
if not dom.beta is None:
sm += dom.beta
mn = dom.head - sm
mx = sm
mx += dom.head
should_box = mn.lt(0) * mx.gt(0)
gtz = dom.head.gt(0)
mn.neg_()
should_boxer = mn.gt(mx)
mn /= 2
newhead = h.ifThenElse(should_box, h.ifThenElse(should_boxer, mx / 2, dom.head + mn ), gtz.to_dtype() * dom.head)
zbet = dom.beta if not dom.beta is None else 0
newbeta = h.ifThenElse(should_box, h.ifThenElse(should_boxer, mx / 2, mn + zbet), gtz.to_dtype() * zbet)
newerr = h.ifThenElseL(should_box, 1 - should_boxer, gtz).to_dtype() * dom.errors
return dom.new(newhead, newbeta , newerr)
def creluSmooth(dom):
if dom.errors is None:
if dom.beta is None:
return dom.new(F.relu(dom.head), None, None)
er = dom.beta
mx = F.relu(dom.head + er)
mn = F.relu(dom.head - er)
return dom.new((mn + mx) / 2, (mx - mn) / 2 , None)
aber = torch.abs(dom.errors)
sm = torch.sum(aber, 0)
if not dom.beta is None:
sm += dom.beta
mn = dom.head - sm
mx = sm
mx += dom.head
nmn = F.relu(-1 * mn)
zbet = (dom.beta if not dom.beta is None else 0)
newheadS = dom.head + nmn / 2
newbetaS = zbet + nmn / 2
newerrS = dom.errors
mmx = F.relu(mx)
newheadB = mmx / 2
newbetaB = newheadB
newerrB = 0
eps = 0.0001
t = nmn / (mmx + nmn + eps) # mn.lt(0).to_dtype() * F.sigmoid(nmn - nmx)
shouldnt_zero = mx.gt(0).to_dtype()
newhead = shouldnt_zero * ( (1 - t) * newheadS + t * newheadB)
newbeta = shouldnt_zero * ( (1 - t) * newbetaS + t * newbetaB)
newerr = shouldnt_zero * ( (1 - t) * newerrS + t * newerrB)
return dom.new(newhead, newbeta , newerr)
def creluNIPS(dom):
if dom.errors is None:
if dom.beta is None:
return dom.new(F.relu(dom.head), None, None)
er = dom.beta
mx = F.relu(dom.head + er)
mn = F.relu(dom.head - er)
return dom.new((mn + mx) / 2, (mx - mn) / 2 , None)
sm = torch.sum(torch.abs(dom.errors), 0)
if not dom.beta is None:
sm += dom.beta
mn = dom.head - sm
mx = dom.head + sm
mngz = mn >= 0.0
zs = h.zeros(dom.head.shape)
diff = mx - mn
lam = torch.where((mx > 0) & (diff > 0.0), mx / diff, zs)
mu = lam * mn * (-0.5)
betaz = zs if dom.beta is None else dom.beta
newhead = torch.where(mngz, dom.head , lam * dom.head + mu)
mngz += diff <= 0.0
newbeta = torch.where(mngz, betaz , lam * betaz + mu ) # mu is always positive on this side
newerr = torch.where(mngz, dom.errors, lam * dom.errors )
return dom.new(newhead, newbeta, newerr)
class MaxTypes:
@staticmethod
def ub(x):
return x.ub()
@staticmethod
def only_beta(x):
return x.beta if x.beta is not None else x.head * 0
@staticmethod
def head_beta(x):
return MaxTypes.only_beta(x) + x.head
class HybridZonotope:
def isSafe(self, target):
od,_ = torch.min(h.preDomRes(self,target).lb(), 1)
return od.gt(0.0).long()
def isPoint(self):
return False
def labels(self):
target = torch.max(self.ub(), 1)[1]
l = list(h.preDomRes(self,target).lb()[0])
return [target.item()] + [ i for i,v in zip(range(len(l)), l) if v <= 0]
def relu(self):
return self.customRelu(self)
def __init__(self, head, beta, errors, customRelu = creluBoxy, **kargs):
self.head = head
self.errors = errors
self.beta = beta
self.customRelu = creluBoxy if customRelu is None else customRelu
def new(self, *args, customRelu = None, **kargs):
return self.__class__(*args, **kargs, customRelu = self.customRelu if customRelu is None else customRelu).checkSizes()
def zono_to_hybrid(self, *args, **kargs): # we are already a hybrid zono.
return self.new(self.head, self.beta, self.errors, **kargs)
def hybrid_to_zono(self, *args, correlate=True, customRelu = None, **kargs):
beta = self.beta
errors = self.errors
if correlate and beta is not None:
batches = beta.shape[0]
num_elem = h.product(beta.shape[1:])
ei = h.getEi(batches, num_elem)
if len(beta.shape) > 2:
ei = ei.contiguous().view(num_elem, *beta.shape)
err = ei * beta
errors = torch.cat((err, errors), dim=0) if errors is not None else err
beta = None
return Zonotope(self.head, beta, errors if errors is not None else (self.beta * 0).unsqueeze(0) , customRelu = self.customRelu if customRelu is None else None)
def abstractApplyLeaf(self, foo, *args, **kargs):
return getattr(self, foo)(*args, **kargs)
def decorrelate(self, cc_indx_batch_err): # keep these errors
if self.errors is None:
return self
batch_size = self.head.shape[0]
num_error_terms = self.errors.shape[0]
beta = h.zeros(self.head.shape).to_dtype() if self.beta is None else self.beta
errors = h.zeros([0] + list(self.head.shape)).to_dtype() if self.errors is None else self.errors
inds_i = torch.arange(self.head.shape[0], device=h.device).unsqueeze(1).long()
errors = errors.to_dtype().permute(1,0, *list(range(len(self.errors.shape)))[2:])
sm = errors.clone()
sm[inds_i, cc_indx_batch_err] = 0
beta = beta.to_dtype() + sm.abs().sum(dim=1)
errors = errors[inds_i, cc_indx_batch_err]
errors = errors.permute(1,0, *list(range(len(self.errors.shape)))[2:]).contiguous()
return self.new(self.head, beta, errors)
def dummyDecorrelate(self, num_decorrelate):
if num_decorrelate == 0 or self.errors is None:
return self
elif num_decorrelate >= self.errors.shape[0]:
beta = self.beta
if self.errors is not None:
errs = self.errors.abs().sum(dim=0)
if beta is None:
beta = errs
else:
beta += errs
return self.new(self.head, beta, None)
return None
def stochasticDecorrelate(self, num_decorrelate, choices = None, num_to_keep=False):
dummy = self.dummyDecorrelate(num_decorrelate)
if dummy is not None:
return dummy
num_error_terms = self.errors.shape[0]
batch_size = self.head.shape[0]
ucc_mask = h.ones([batch_size, self.errors.shape[0]]).long()
cc_indx_batch_err = h.cudify(torch.multinomial(ucc_mask.to_dtype(), num_decorrelate if num_to_keep else num_error_terms - num_decorrelate, replacement=False)) if choices is None else choices
return self.decorrelate(cc_indx_batch_err)
def decorrelateMin(self, num_decorrelate, num_to_keep=False):
dummy = self.dummyDecorrelate(num_decorrelate)
if dummy is not None:
return dummy
num_error_terms = self.errors.shape[0]
batch_size = self.head.shape[0]
error_sum_b_e = self.errors.abs().view(self.errors.shape[0], batch_size, -1).sum(dim=2).permute(1,0)
cc_indx_batch_err = error_sum_b_e.topk(num_decorrelate if num_to_keep else num_error_terms - num_decorrelate)[1]
return self.decorrelate(cc_indx_batch_err)
def correlate(self, cc_indx_batch_beta): # given in terms of the flattened matrix.
num_correlate = h.product(cc_indx_batch_beta.shape[1:])
beta = h.zeros(self.head.shape).to_dtype() if self.beta is None else self.beta
errors = h.zeros([0] + list(self.head.shape)).to_dtype() if self.errors is None else self.errors
batch_size = beta.shape[0]
new_errors = h.zeros([num_correlate] + list(self.head.shape)).to_dtype()
inds_i = torch.arange(batch_size, device=h.device).unsqueeze(1).long()
nc = torch.arange(num_correlate, device=h.device).unsqueeze(1).long()
new_errors = new_errors.permute(1,0, *list(range(len(new_errors.shape)))[2:]).contiguous().view(batch_size, num_correlate, -1)
new_errors[inds_i, nc.unsqueeze(0).expand([batch_size]+list(nc.shape)).squeeze(2), cc_indx_batch_beta] = beta.view(batch_size,-1)[inds_i, cc_indx_batch_beta]
new_errors = new_errors.permute(1,0, *list(range(len(new_errors.shape)))[2:]).contiguous().view(num_correlate, batch_size, *beta.shape[1:])
errors = torch.cat((errors, new_errors), dim=0)
beta.view(batch_size, -1)[inds_i, cc_indx_batch_beta] = 0
return self.new(self.head, beta, errors)
def stochasticCorrelate(self, num_correlate, choices = None):
if num_correlate == 0:
return self
domshape = self.head.shape
batch_size = domshape[0]
num_pixs = h.product(domshape[1:])
num_correlate = min(num_correlate, num_pixs)
ucc_mask = h.ones([batch_size, num_pixs ]).long()
cc_indx_batch_beta = h.cudify(torch.multinomial(ucc_mask.to_dtype(), num_correlate, replacement=False)) if choices is None else choices
return self.correlate(cc_indx_batch_beta)
def correlateMaxK(self, num_correlate):
if num_correlate == 0:
return self
domshape = self.head.shape
batch_size = domshape[0]
num_pixs = h.product(domshape[1:])
num_correlate = min(num_correlate, num_pixs)
concrete_max_image = self.ub().view(batch_size, -1)
cc_indx_batch_beta = concrete_max_image.topk(num_correlate)[1]
return self.correlate(cc_indx_batch_beta)
def correlateMaxPool(self, *args, max_type = MaxTypes.ub , max_pool = F.max_pool2d, **kargs):
domshape = self.head.shape
batch_size = domshape[0]
num_pixs = h.product(domshape[1:])
concrete_max_image = max_type(self)
cc_indx_batch_beta = max_pool(concrete_max_image, *args, return_indices=True, **kargs)[1].view(batch_size, -1)
return self.correlate(cc_indx_batch_beta)
def checkSizes(self):
if not self.errors is None:
if not self.errors.size()[1:] == self.head.size():
raise Exception("Such bad sizes on error:", self.errors.shape, " head:", self.head.shape)
if torch.isnan(self.errors).any():
raise Exception("Such nan in errors")
if not self.beta is None:
if not self.beta.size() == self.head.size():
raise Exception("Such bad sizes on beta")
if torch.isnan(self.beta).any():
raise Exception("Such nan in errors")
if self.beta.lt(0.0).any():
self.beta = self.beta.abs()
return self
def __mul__(self, flt):
return self.new(self.head * flt, None if self.beta is None else self.beta * abs(flt), None if self.errors is None else self.errors * flt)
def __truediv__(self, flt):
flt = 1. / flt
return self.new(self.head * flt, None if self.beta is None else self.beta * abs(flt), None if self.errors is None else self.errors * flt)
def __add__(self, other):
if isinstance(other, HybridZonotope):
return self.new(self.head + other.head, h.msum(self.beta, other.beta, lambda a,b: a + b), h.msum(self.errors, other.errors, catNonNullErrors(lambda a,b: a + b)))
else:
# other has to be a standard variable or tensor
return self.new(self.head + other, self.beta, self.errors)
def addPar(self, a, b):
return self.new(a.head + b.head, h.msum(a.beta, b.beta, lambda a,b: a + b), h.msum(a.errors, b.errors, catNonNullErrors(lambda a,b: a + b, self.errors)))
def __sub__(self, other):
if isinstance(other, HybridZonotope):
return self.new(self.head - other.head
, h.msum(self.beta, other.beta, lambda a,b: a + b)
, h.msum(self.errors, None if other.errors is None else -other.errors, catNonNullErrors(lambda a,b: a + b)))
else:
# other has to be a standard variable or tensor
return self.new(self.head - other, self.beta, self.errors)
def bmm(self, other):
hd = self.head.bmm(other)
bet = None if self.beta is None else self.beta.bmm(other.abs())
if self.errors is None:
er = None
else:
er = self.errors.matmul(other)
return self.new(hd, bet, er)
def getBeta(self):
return self.head * 0 if self.beta is None else self.beta
def getErrors(self):
return (self.head * 0).unsqueeze(0) if self.beta is None else self.errors
def merge(self, other, ref = None): # the vast majority of the time ref should be none here. Not for parallel computation with powerset
s_beta = self.getBeta() # so that beta is never none
sbox_u = self.head + s_beta
sbox_l = self.head - s_beta
o_u = other.ub()
o_l = other.lb()
o_in_s = (o_u <= sbox_u) & (o_l >= sbox_l)
s_err_mx = self.errors.abs().sum(dim=0)
if not isinstance(other, HybridZonotope):
new_head = (self.head + other.center()) / 2
new_beta = torch.max(sbox_u + s_err_mx,o_u) - new_head
return self.new(torch.where(o_in_s, self.head, new_head), torch.where(o_in_s, self.beta,new_beta), o_in_s.float() * self.errors)
# TODO: could be more efficient if one of these doesn't have beta or errors but thats okay for now.
s_u = sbox_u + s_err_mx
s_l = sbox_l - s_err_mx
obox_u = o_u - other.head
obox_l = o_l + other.head
s_in_o = (s_u <= obox_u) & (s_l >= obox_l)
# TODO: could theoretically still do something better when one is contained partially in the other
new_head = (self.head + other.center()) / 2
new_beta = torch.max(sbox_u + self.getErrors().abs().sum(dim=0),o_u) - new_head
return self.new(torch.where(o_in_s, self.head, torch.where(s_in_o, other.head, new_head))
, torch.where(o_in_s, s_beta,torch.where(s_in_o, other.getBeta(), new_beta))
, h.msum(o_in_s.float() * self.errors, s_in_o.float() * other.errors, catNonNullErrors(lambda a,b: a + b, ref_errs = ref.errors if ref is not None else ref))) # these are both zero otherwise
def conv(self, conv, weight, bias = None, **kargs):
h = self.errors
inter = h if h is None else h.view(-1, *h.size()[2:])
hd = conv(self.head, weight, bias=bias, **kargs)
res = h if h is None else conv(inter, weight, bias=None, **kargs)
return self.new( hd
, None if self.beta is None else conv(self.beta, weight.abs(), bias = None, **kargs)
, h if h is None else res.view(h.size()[0], h.size()[1], *res.size()[1:]))
def conv1d(self, *args, **kargs):
return self.conv(lambda x, *args, **kargs: x.conv1d(*args,**kargs), *args, **kargs)
def conv2d(self, *args, **kargs):
return self.conv(lambda x, *args, **kargs: x.conv2d(*args,**kargs), *args, **kargs)
def conv3d(self, *args, **kargs):
return self.conv(lambda x, *args, **kargs: x.conv3d(*args,**kargs), *args, **kargs)
def conv_transpose1d(self, *args, **kargs):
return self.conv(lambda x, *args, **kargs: x.conv_transpose1d(*args,**kargs), *args, **kargs)
def conv_transpose2d(self, *args, **kargs):
return self.conv(lambda x, *args, **kargs: x.conv_transpose2d(*args,**kargs), *args, **kargs)
def conv_transpose3d(self, *args, **kargs):
return self.conv(lambda x, *args, **kargs: x.conv_transpose3d(*args,**kargs), *args, **kargs)
def matmul(self, other):
return self.new(self.head.matmul(other), None if self.beta is None else self.beta.matmul(other.abs()), None if self.errors is None else self.errors.matmul(other))
def unsqueeze(self, i):
return self.new(self.head.unsqueeze(i), None if self.beta is None else self.beta.unsqueeze(i), None if self.errors is None else self.errors.unsqueeze(i + 1))
def squeeze(self, dim):
return self.new(self.head.squeeze(dim),
None if self.beta is None else self.beta.squeeze(dim),
None if self.errors is None else self.errors.squeeze(dim + 1 if dim >= 0 else dim))
def double(self):
return self.new(self.head.double(), self.beta.double() if self.beta is not None else None, self.errors.double() if self.errors is not None else None)
def float(self):
return self.new(self.head.float(), self.beta.float() if self.beta is not None else None, self.errors.float() if self.errors is not None else None)
def to_dtype(self):
return self.new(self.head.to_dtype(), self.beta.to_dtype() if self.beta is not None else None, self.errors.to_dtype() if self.errors is not None else None)
def sum(self, dim=1):
return self.new(torch.sum(self.head,dim=dim), None if self.beta is None else torch.sum(self.beta,dim=dim), None if self.errors is None else torch.sum(self.errors, dim= dim + 1 if dim >= 0 else dim))
def view(self,*newshape):
return self.new(self.head.view(*newshape),
None if self.beta is None else self.beta.view(*newshape),
None if self.errors is None else self.errors.view(self.errors.size()[0], *newshape))
def gather(self,dim, index):
return self.new(self.head.gather(dim, index),
None if self.beta is None else self.beta.gather(dim, index),
None if self.errors is None else self.errors.gather(dim + 1, index.expand([self.errors.size()[0]] + list(index.size()))))
def concretize(self):
if self.errors is None:
return self
return self.new(self.head, torch.sum(self.concreteErrors().abs(),0), None) # maybe make a box?
def cat(self,other, dim=0):
return self.new(self.head.cat(other.head, dim = dim),
h.msum(other.beta, self.beta, lambda a,b: a.cat(b, dim = dim)),
h.msum(self.errors, other.errors, catNonNullErrors(lambda a,b: a.cat(b, dim+1))))
def split(self, split_size, dim = 0):
heads = list(self.head.split(split_size, dim))
betas = list(self.beta.split(split_size, dim)) if not self.beta is None else None
errorss = list(self.errors.split(split_size, dim + 1)) if not self.errors is None else None
def makeFromI(i):
return self.new( heads[i],
None if betas is None else betas[i],
None if errorss is None else errorss[i])
return tuple(makeFromI(i) for i in range(len(heads)))
def concreteErrors(self):
if self.beta is None and self.errors is None:
raise Exception("shouldn't have both beta and errors be none")
if self.errors is None:
return self.beta.unsqueeze(0)
if self.beta is None:
return self.errors
return torch.cat([self.beta.unsqueeze(0),self.errors], dim=0)
def applyMonotone(self, foo, *args, **kargs):
if self.beta is None and self.errors is None:
return self.new(foo(self.head), None , None)
beta = self.concreteErrors().abs().sum(dim=0)
tp = foo(self.head + beta, *args, **kargs)
bt = foo(self.head - beta, *args, **kargs)
new_hybrid = self.new((tp + bt) / 2, (tp - bt) / 2 , None)
if self.errors is not None:
return new_hybrid.correlateMaxK(self.errors.shape[0])
return new_hybrid
def avg_pool2d(self, *args, **kargs):
nhead = F.avg_pool2d(self.head, *args, **kargs)
return self.new(nhead,
None if self.beta is None else F.avg_pool2d(self.beta, *args, **kargs),
None if self.errors is None else F.avg_pool2d(self.errors.view(-1, *self.head.shape[1:]), *args, **kargs).view(-1,*nhead.shape))
def adaptive_avg_pool2d(self, *args, **kargs):
nhead = F.adaptive_avg_pool2d(self.head, *args, **kargs)
return self.new(nhead,
None if self.beta is None else F.adaptive_avg_pool2d(self.beta, *args, **kargs),
None if self.errors is None else F.adaptive_avg_pool2d(self.errors.view(-1, *self.head.shape[1:]), *args, **kargs).view(-1,*nhead.shape))
def elu(self):
return self.applyMonotone(F.elu)
def selu(self):
return self.applyMonotone(F.selu)
def sigm(self):
return self.applyMonotone(F.sigmoid)
def softplus(self):
if self.errors is None:
if self.beta is None:
return self.new(F.softplus(self.head), None , None)
tp = F.softplus(self.head + self.beta)
bt = F.softplus(self.head - self.beta)
return self.new((tp + bt) / 2, (tp - bt) / 2 , None)
errors = self.concreteErrors()
o = h.ones(self.head.size())
def sp(hd):
return F.softplus(hd) # torch.log(o + torch.exp(hd)) # not very stable
def spp(hd):
ehd = torch.exp(hd)
return ehd.div(ehd + o)
def sppp(hd):
ehd = torch.exp(hd)
md = ehd + o
return ehd.div(md.mul(md))
fa = sp(self.head)
fpa = spp(self.head)
a = self.head
k = torch.sum(errors.abs(), 0)
def evalG(r):
return r.mul(r).mul(sppp(a + r))
m = torch.max(evalG(h.zeros(k.size())), torch.max(evalG(k), evalG(-k)))
m = h.ifThenElse( a.abs().lt(k), torch.max(m, torch.max(evalG(a), evalG(-a))), m)
m /= 2
return self.new(fa, m if self.beta is None else m + self.beta.mul(fpa), None if self.errors is None else self.errors.mul(fpa))
def center(self):
return self.head
def vanillaTensorPart(self):
return self.head
def lb(self):
return self.head - self.concreteErrors().abs().sum(dim=0)
def ub(self):
return self.head + self.concreteErrors().abs().sum(dim=0)
def size(self):
return self.head.size()
def diameter(self):
abal = torch.abs(self.concreteErrors()).transpose(0,1)
return abal.sum(1).sum(1) # perimeter
def loss(self, target, **args):
r = -h.preDomRes(self, target).lb()
return F.softplus(r.max(1)[0])
def deep_loss(self, act = F.relu, *args, **kargs):
batch_size = self.head.shape[0]
inds = torch.arange(batch_size, device=h.device).unsqueeze(1).long()
def dl(l,u):
ls, lsi = torch.sort(l, dim=1)
ls_u = u[inds, lsi]
def slidingMax(a): # using maxpool
k = a.shape[1]
ml = a.min(dim=1)[0].unsqueeze(1)
inp = torch.cat((h.zeros([batch_size, k]), a - ml), dim=1)
mpl = F.max_pool1d(inp.unsqueeze(1) , kernel_size = k, stride=1, padding = 0, return_indices=False).squeeze(1)
return mpl[:,:-1] + ml
return act(slidingMax(ls_u) - ls).sum(dim=1)
l = self.lb().view(batch_size, -1)
u = self.ub().view(batch_size, -1)
return ( dl(l,u) + dl(-u,-l) ) / (2 * l.shape[1]) # make it easier to regularize against
class Zonotope(HybridZonotope):
def applySuper(self, ret):
batches = ret.head.size()[0]
num_elem = h.product(ret.head.size()[1:])
ei = h.getEi(batches, num_elem)
if len(ret.head.size()) > 2:
ei = ei.contiguous().view(num_elem, *ret.head.size())
ret.errors = torch.cat( (ret.errors, ei * ret.beta) ) if not ret.beta is None else ret.errors
ret.beta = None
return ret.checkSizes()
def zono_to_hybrid(self, *args, customRelu = None, **kargs): # we are already a hybrid zono.
return HybridZonotope(self.head, self.beta, self.errors, customRelu = self.customRelu if customRelu is None else customRelu)
def hybrid_to_zono(self, *args, **kargs):
return self.new(self.head, self.beta, self.errors, **kargs)
def applyMonotone(self, *args, **kargs):
return self.applySuper(super(Zonotope,self).applyMonotone(*args, **kargs))
def softplus(self):
return self.applySuper(super(Zonotope,self).softplus())
def relu(self):
return self.applySuper(super(Zonotope,self).relu())
def splitRelu(self, *args, **kargs):
return [self.applySuper(a) for a in super(Zonotope, self).splitRelu(*args, **kargs)]
def mysign(x):
e = x.eq(0).to_dtype()
r = x.sign().to_dtype()
return r + e
def mulIfEq(grad,out,target):
pred = out.max(1, keepdim=True)[1]
is_eq = pred.eq(target.view_as(pred)).to_dtype()
is_eq = is_eq.view([-1] + [1 for _ in grad.size()[1:]]).expand_as(grad)
return is_eq
def stdLoss(out, target):
if torch.__version__[0] == "0":
return F.cross_entropy(out, target, reduce = False)
else:
return F.cross_entropy(out, target, reduction='none')
class ListDomain(object):
def __init__(self, al, *args, **kargs):
self.al = list(al)
def new(self, *args, **kargs):
return self.__class__(*args, **kargs)
def isSafe(self,*args,**kargs):
raise "Domain Not Suitable For Testing"
def labels(self):
raise "Domain Not Suitable For Testing"
def isPoint(self):
return all(a.isPoint() for a in self.al)
def __mul__(self, flt):
return self.new(a.__mul__(flt) for a in self.al)
def __truediv__(self, flt):
return self.new(a.__truediv__(flt) for a in self.al)
def __add__(self, other):
if isinstance(other, ListDomain):
return self.new(a.__add__(o) for a,o in zip(self.al, other.al))
else:
return self.new(a.__add__(other) for a in self.al)
def merge(self, other, ref = None):
if ref is None:
return self.new(a.merge(o) for a,o in zip(self.al,other.al) )
return self.new(a.merge(o, ref = r) for a,o,r in zip(self.al,other.al, ref.al))
def addPar(self, a, b):
return self.new(s.addPar(av,bv) for s,av,bv in zip(self.al, a.al, b.al))
def __sub__(self, other):
if isinstance(other, ListDomain):
return self.new(a.__sub__(o) for a,o in zip(self.al, other.al))
else:
return self.new(a.__sub__(other) for a in self.al)
def abstractApplyLeaf(self, *args, **kargs):
return self.new(a.abstractApplyLeaf(*args, **kargs) for a in self.al)
def bmm(self, other):
return self.new(a.bmm(other) for a in self.al)
def matmul(self, other):
return self.new(a.matmul(other) for a in self.al)
def conv(self, *args, **kargs):
return self.new(a.conv(*args, **kargs) for a in self.al)
def conv1d(self, *args, **kargs):
return self.new(a.conv1d(*args, **kargs) for a in self.al)
def conv2d(self, *args, **kargs):
return self.new(a.conv2d(*args, **kargs) for a in self.al)
def conv3d(self, *args, **kargs):
return self.new(a.conv3d(*args, **kargs) for a in self.al)
def max_pool2d(self, *args, **kargs):
return self.new(a.max_pool2d(*args, **kargs) for a in self.al)
def avg_pool2d(self, *args, **kargs):
return self.new(a.avg_pool2d(*args, **kargs) for a in self.al)
def adaptive_avg_pool2d(self, *args, **kargs):
return self.new(a.adaptive_avg_pool2d(*args, **kargs) for a in self.al)
def unsqueeze(self, *args, **kargs):
return self.new(a.unsqueeze(*args, **kargs) for a in self.al)
def squeeze(self, *args, **kargs):
return self.new(a.squeeze(*args, **kargs) for a in self.al)
def view(self, *args, **kargs):
return self.new(a.view(*args, **kargs) for a in self.al)
def gather(self, *args, **kargs):
return self.new(a.gather(*args, **kargs) for a in self.al)
def sum(self, *args, **kargs):
return self.new(a.sum(*args,**kargs) for a in self.al)
def double(self):
return self.new(a.double() for a in self.al)
def float(self):
return self.new(a.float() for a in self.al)
def to_dtype(self):
return self.new(a.to_dtype() for a in self.al)
def vanillaTensorPart(self):
return self.al[0].vanillaTensorPart()
def center(self):
return self.new(a.center() for a in self.al)
def ub(self):
return self.new(a.ub() for a in self.al)
def lb(self):
return self.new(a.lb() for a in self.al)
def relu(self):
return self.new(a.relu() for a in self.al)
def splitRelu(self, *args, **kargs):
return self.new(a.splitRelu(*args, **kargs) for a in self.al)
def softplus(self):
return self.new(a.softplus() for a in self.al)
def elu(self):
return self.new(a.elu() for a in self.al)
def selu(self):
return self.new(a.selu() for a in self.al)
def sigm(self):
return self.new(a.sigm() for a in self.al)
def cat(self, other, *args, **kargs):
return self.new(a.cat(o, *args, **kargs) for a,o in zip(self.al, other.al))
def split(self, *args, **kargs):
return [self.new(*z) for z in zip(a.split(*args, **kargs) for a in self.al)]
def size(self):
return self.al[0].size()
def loss(self, *args, **kargs):
return sum(a.loss(*args, **kargs) for a in self.al)
def deep_loss(self, *args, **kargs):
return sum(a.deep_loss(*args, **kargs) for a in self.al)
def checkSizes(self):
for a in self.al:
a.checkSizes()
return self
class TaggedDomain(object):
def __init__(self, a, tag = None):
self.tag = tag
self.a = a
def isSafe(self,*args,**kargs):
return self.a.isSafe(*args, **kargs)
def isPoint(self):
return self.a.isPoint()
def labels(self):
raise "Domain Not Suitable For Testing"
def __mul__(self, flt):
return TaggedDomain(self.a.__mul__(flt), self.tag)
def __truediv__(self, flt):
return TaggedDomain(self.a.__truediv__(flt), self.tag)
def __add__(self, other):
if isinstance(other, TaggedDomain):
return TaggedDomain(self.a.__add__(other.a), self.tag)
else:
return TaggedDomain(self.a.__add__(other), self.tag)
def addPar(self, a,b):
return TaggedDomain(self.a.addPar(a.a, b.a), self.tag)
def __sub__(self, other):
if isinstance(other, TaggedDomain):
return TaggedDomain(self.a.__sub__(other.a), self.tag)
else:
return TaggedDomain(self.a.__sub__(other), self.tag)
def bmm(self, other):
return TaggedDomain(self.a.bmm(other), self.tag)
def matmul(self, other):
return TaggedDomain(self.a.matmul(other), self.tag)
def conv(self, *args, **kargs):
return TaggedDomain(self.a.conv(*args, **kargs) , self.tag)
def conv1d(self, *args, **kargs):
return TaggedDomain(self.a.conv1d(*args, **kargs), self.tag)
def conv2d(self, *args, **kargs):
return TaggedDomain(self.a.conv2d(*args, **kargs), self.tag)
def conv3d(self, *args, **kargs):
return TaggedDomain(self.a.conv3d(*args, **kargs), self.tag)
def max_pool2d(self, *args, **kargs):
return TaggedDomain(self.a.max_pool2d(*args, **kargs), self.tag)
def avg_pool2d(self, *args, **kargs):
return TaggedDomain(self.a.avg_pool2d(*args, **kargs), self.tag)
def adaptive_avg_pool2d(self, *args, **kargs):
return TaggedDomain(self.a.adaptive_avg_pool2d(*args, **kargs), self.tag)
def unsqueeze(self, *args, **kargs):
return TaggedDomain(self.a.unsqueeze(*args, **kargs), self.tag)
def squeeze(self, *args, **kargs):
return TaggedDomain(self.a.squeeze(*args, **kargs), self.tag)
def abstractApplyLeaf(self, *args, **kargs):
return TaggedDomain(self.a.abstractApplyLeaf(*args, **kargs), self.tag)
def view(self, *args, **kargs):
return TaggedDomain(self.a.view(*args, **kargs), self.tag)
def gather(self, *args, **kargs):
return TaggedDomain(self.a.gather(*args, **kargs), self.tag)
def sum(self, *args, **kargs):
return TaggedDomain(self.a.sum(*args,**kargs), self.tag)
def double(self):
return TaggedDomain(self.a.double(), self.tag)
def float(self):
return TaggedDomain(self.a.float(), self.tag)
def to_dtype(self):
return TaggedDomain(self.a.to_dtype(), self.tag)
def vanillaTensorPart(self):
return self.a.vanillaTensorPart()
def center(self):
return TaggedDomain(self.a.center(), self.tag)
def ub(self):
return TaggedDomain(self.a.ub(), self.tag)
def lb(self):
return TaggedDomain(self.a.lb(), self.tag)
def relu(self):
return TaggedDomain(self.a.relu(), self.tag)
def splitRelu(self, *args, **kargs):
return TaggedDomain(self.a.splitRelu(*args, **kargs), self.tag)
def diameter(self):
return self.a.diameter()
def softplus(self):
return TaggedDomain(self.a.softplus(), self.tag)
def elu(self):
return TaggedDomain(self.a.elu(), self.tag)
def selu(self):
return TaggedDomain(self.a.selu(), self.tag)
def sigm(self):
return TaggedDomain(self.a.sigm(), self.tag)
def cat(self, other, *args, **kargs):
return TaggedDomain(self.a.cat(other.a, *args, **kargs), self.tag)
def split(self, *args, **kargs):
return [TaggedDomain(z, self.tag) for z in self.a.split(*args, **kargs)]
def size(self):
return self.a.size()
def loss(self, *args, **kargs):
return self.tag.loss(self.a, *args, **kargs)
def deep_loss(self, *args, **kargs):
return self.a.deep_loss(*args, **kargs)
def checkSizes(self):
self.a.checkSizes()
return self
def merge(self, other, ref = None):
return TaggedDomain(self.a.merge(other.a, ref = None if ref is None else ref.a), self.tag)
|