diffai / helpers.py
khulnasoft's picture
Upload 16 files
746c674 verified
raw
history blame
14.9 kB
import future
import builtins
import past
import six
import inspect
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import argparse
import decimal
import PIL
from torchvision import datasets, transforms
from datetime import datetime
from forbiddenfruit import curse
#from torch.autograd import Variable
from timeit import default_timer as timer
class Timer:
def __init__(self, activity = None, units = 1, shouldPrint = True, f = None):
self.activity = activity
self.units = units
self.shouldPrint = shouldPrint
self.f = f
def __enter__(self):
self.start = timer()
return self
def getUnitTime(self):
return (self.end - self.start) / self.units
def __str__(self):
return "Avg time to " + self.activity + ": "+str(self.getUnitTime())
def __exit__(self, *args):
self.end = timer()
if self.shouldPrint:
printBoth(self, f = self.f)
def cudify(x):
if use_cuda:
return x.cuda(async=True)
return x
def pyval(a, **kargs):
return dten([a], **kargs)
def ifThenElse(cond, a, b):
cond = cond.to_dtype()
return cond * a + (1 - cond) * b
def ifThenElseL(cond, a, b):
return cond * a + (1 - cond) * b
def product(it):
if isinstance(it,int):
return it
product = 1
for x in it:
if x >= 0:
product *= x
return product
def getEi(batches, num_elem):
return eye(num_elem).expand(batches, num_elem,num_elem).permute(1,0,2)
def one_hot(batch,d):
bs = batch.size()[0]
indexes = [ list(range(bs)), batch]
values = [ 1 for _ in range(bs) ]
return cudify(torch.sparse.FloatTensor(ltenCPU(indexes), ftenCPU(values), torch.Size([bs,d])))
def seye(n, m = None):
if m is None:
m = n
mn = n if n < m else m
indexes = [[ i for i in range(mn) ], [ i for i in range(mn) ] ]
values = [1 for i in range(mn) ]
return cudify(torch.sparse.ByteTensor(ltenCPU(indexes), dtenCPU(values), torch.Size([n,m])))
dtype = torch.float32
ftype = torch.float32
ltype = torch.int64
btype = torch.uint8
torch.set_default_dtype(dtype)
cpu = torch.device("cpu")
cuda_async = True
ftenCPU = lambda *args, **kargs: torch.tensor(*args, dtype=ftype, device=cpu, **kargs)
dtenCPU = lambda *args, **kargs: torch.tensor(*args, dtype=dtype, device=cpu, **kargs)
ltenCPU = lambda *args, **kargs: torch.tensor(*args, dtype=ltype, device=cpu, **kargs)
btenCPU = lambda *args, **kargs: torch.tensor(*args, dtype=btype, device=cpu, **kargs)
if torch.cuda.is_available() and not 'NOCUDA' in os.environ:
print("using cuda")
device = torch.device("cuda")
ften = lambda *args, **kargs: torch.tensor(*args, dtype=ftype, device=device, **kargs).cuda(non_blocking=cuda_async)
dten = lambda *args, **kargs: torch.tensor(*args, dtype=dtype, device=device, **kargs).cuda(non_blocking=cuda_async)
lten = lambda *args, **kargs: torch.tensor(*args, dtype=ltype, device=device, **kargs).cuda(non_blocking=cuda_async)
bten = lambda *args, **kargs: torch.tensor(*args, dtype=btype, device=device, **kargs).cuda(non_blocking=cuda_async)
ones = lambda *args, **cargs: torch.ones(*args, **cargs).cuda(non_blocking=cuda_async)
zeros = lambda *args, **cargs: torch.zeros(*args, **cargs).cuda(non_blocking=cuda_async)
eye = lambda *args, **cargs: torch.eye(*args, **cargs).cuda(non_blocking=cuda_async)
use_cuda = True
print("set up cuda")
else:
print("not using cuda")
ften = ftenCPU
dten = dtenCPU
lten = ltenCPU
bten = btenCPU
ones = torch.ones
zeros = torch.zeros
eye = torch.eye
use_cuda = False
device = cpu
def smoothmax(x, alpha, dim = 0):
return x.mul(F.softmax(x * alpha, dim)).sum(dim + 1)
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def flat(lst):
lst_ = []
for l in lst:
lst_ += l
return lst_
def printBoth(*st, f = None):
print(*st)
if not f is None:
print(*st, file=f)
def hasMethod(cl, mt):
return callable(getattr(cl, mt, None))
def getMethodNames(Foo):
return [func for func in dir(Foo) if callable(getattr(Foo, func)) and not func.startswith("__")]
def getMethods(Foo):
return [getattr(Foo, m) for m in getMethodNames(Foo)]
max_c_for_norm = 10000
def numel(arr):
return product(arr.size())
def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
def loadDataset(dataset, batch_size, train, transform = True):
oargs = {}
if dataset in ["MNIST", "CIFAR10", "CIFAR100", "FashionMNIST", "PhotoTour"]:
oargs['train'] = train
elif dataset in ["STL10", "SVHN"] :
oargs['split'] = 'train' if train else 'test'
elif dataset in ["LSUN"]:
oargs['classes'] = 'train' if train else 'test'
elif dataset in ["Imagenet12"]:
pass
else:
raise Exception(dataset + " is not yet supported")
if dataset in ["MNIST"]:
transformer = transforms.Compose([ transforms.ToTensor()]
+ ([transforms.Normalize((0.1307,), (0.3081,))] if transform else []))
elif dataset in ["CIFAR10", "CIFAR100"]:
transformer = transforms.Compose(([ #transforms.RandomCrop(32, padding=4),
transforms.RandomAffine(0, (0.125, 0.125), resample=PIL.Image.BICUBIC) ,
transforms.RandomHorizontalFlip(),
#transforms.RandomRotation(15, resample = PIL.Image.BILINEAR)
] if train else [])
+ [transforms.ToTensor()]
+ ([transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))] if transform else []))
elif dataset in ["SVHN"]:
transformer = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.2,0.2,0.2))])
else:
transformer = transforms.ToTensor()
if dataset in ["Imagenet12"]:
# https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md#download-the-imagenet-dataset
train_set = datasets.ImageFolder(
'../data/Imagenet12/train' if train else '../data/Imagenet12/val',
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
normalize,
]))
else:
train_set = getattr(datasets, dataset)('../data', download=True, transform=transformer, **oargs)
return torch.utils.data.DataLoader(
train_set
, batch_size=batch_size
, shuffle=True,
**({'num_workers': 1, 'pin_memory': True} if use_cuda else {}))
def variable(Pt):
class Point:
def isSafe(self,target):
pred = self.max(1, keepdim=True)[1] # get the index of the max log-probability
return pred.eq(target.data.view_as(pred))
def isPoint(self):
return True
def labels(self):
return [self[0].max(1)[1]] # get the index of the max log-probability
def softplus(self):
return F.softplus(self)
def elu(self):
return F.elu(self)
def selu(self):
return F.selu(self)
def sigm(self):
return F.sigmoid(self)
def conv3d(self, *args, **kargs):
return F.conv3d(self, *args, **kargs)
def conv2d(self, *args, **kargs):
return F.conv2d(self, *args, **kargs)
def conv1d(self, *args, **kargs):
return F.conv1d(self, *args, **kargs)
def conv_transpose3d(self, *args, **kargs):
return F.conv_transpose3d(self, *args, **kargs)
def conv_transpose2d(self, *args, **kargs):
return F.conv_transpose2d(self, *args, **kargs)
def conv_transpose1d(self, *args, **kargs):
return F.conv_transpose1d(self, *args, **kargs)
def max_pool2d(self, *args, **kargs):
return F.max_pool2d(self, *args, **kargs)
def avg_pool2d(self, *args, **kargs):
return F.avg_pool2d(self, *args, **kargs)
def adaptive_avg_pool2d(self, *args, **kargs):
return F.adaptive_avg_pool2d(self, *args, **kargs)
def cat(self, other, dim = 0, **kargs):
return torch.cat((self, other), dim = dim, **kargs)
def addPar(self, a, b):
return a + b
def abstractApplyLeaf(self, foo, *args, **kargs):
return self
def diameter(self):
return pyval(0)
def to_dtype(self):
return self.type(dtype=dtype, non_blocking=cuda_async)
def loss(self, target, **kargs):
if torch.__version__[0] == "0":
return F.cross_entropy(self, target, reduce = False)
else:
return F.cross_entropy(self, target, reduction='none')
def deep_loss(self, *args, **kargs):
return 0
def merge(self, *args, **kargs):
return self
def splitRelu(self, *args, **kargs):
return self
def lb(self):
return self
def vanillaTensorPart(self):
return self
def center(self):
return self
def ub(self):
return self
def cudify(self, cuda_async = True):
return self.cuda(non_blocking=cuda_async) if use_cuda else self
def log_softmax(self, *args, dim = 1, **kargs):
return F.log_softmax(self, *args,dim = dim, **kargs)
if torch.__version__[0] == "0" and torch.__version__ != "0.4.1":
Point.log_softmax = log_softmax
def log_softmax(self, *args, dim = 1, **kargs):
return F.log_softmax(self, *args,dim = dim, **kargs)
if torch.__version__[0] == "0" and torch.__version__ != "0.4.1":
Point.log_softmax = log_softmax
for nm in getMethodNames(Point):
curse(Pt, nm, getattr(Point, nm))
variable(torch.autograd.Variable)
variable(torch.cuda.DoubleTensor)
variable(torch.DoubleTensor)
variable(torch.cuda.FloatTensor)
variable(torch.FloatTensor)
variable(torch.ByteTensor)
variable(torch.Tensor)
def default(dic, nm, d):
if dic is not None and nm in dic:
return dic[nm]
return d
def softmaxBatchNP(x, epsilon, subtract = False):
"""Compute softmax values for each sets of scores in x."""
x = x.astype(np.float64)
ex = x / epsilon if epsilon is not None else x
if subtract:
ex -= ex.max(axis=1)[:,np.newaxis]
e_x = np.exp(ex)
sm = (e_x / e_x.sum(axis=1)[:,np.newaxis])
am = np.argmax(x, axis=1)
bads = np.logical_not(np.isfinite(sm.sum(axis = 1)))
if epsilon is None:
sm[bads] = 0
sm[bads, am[bads]] = 1
else:
epsilon *= (x.shape[1] - 1) / x.shape[1]
sm[bads] = epsilon / (x.shape[1] - 1)
sm[bads, am[bads]] = 1 - epsilon
sm /= sm.sum(axis=1)[:,np.newaxis]
return sm
def cadd(a,b):
both = a.cat(b)
a, b = both.split(a.size()[0])
return a + b
def msum(a,b, l):
if a is None:
return b
if b is None:
return a
return l(a,b)
class SubAct(argparse.Action):
def __init__(self, sub_choices, *args, **kargs):
super(SubAct,self).__init__(*args, nargs='+', **kargs)
self.sub_choices = sub_choices
self.sub_choices_names = None if sub_choices is None else getMethodNames(sub_choices)
def __call__(self, parser, namespace, values, option_string=None):
if self.sub_choices_names is not None and not values[0] in self.sub_choices_names:
msg = 'invalid choice: %r (choose from %s)' % (values[0], self.sub_choices_names)
raise argparse.ArgumentError(self, msg)
prev = getattr(namespace, self.dest)
setattr(namespace, self.dest, prev + [values])
def catLists(val):
if isinstance(val, list):
v = []
for i in val:
v += catLists(i)
return v
return [val]
def sumStr(val):
s = ""
for v in val:
s += v
return s
def catStrs(val):
s = val[0]
if len(val) > 1:
s += "("
for v in val[1:2]:
s += v
for v in val[2:]:
s += ", "+v
if len(val) > 1:
s += ")"
return s
def printNumpy(x):
return "[" + sumStr([decimal.Decimal(float(v)).__format__("f") + ", " for v in x.data.cpu().numpy()])[:-2]+"]"
def printStrList(x):
return "[" + sumStr(v + ", " for v in x)[:-2]+"]"
def printListsNumpy(val):
if isinstance(val, list):
return printStrList(printListsNumpy(v) for v in val)
return printNumpy(val)
def parseValues(values, methods, *others):
if len(values) == 1 and values[0]:
x = eval(values[0], dict(pair for l in ([methods] + list(others)) for pair in l.__dict__.items()) )
return x() if inspect.isclass(x) else x
args = []
kargs = {}
for arg in values[1:]:
if '=' in arg:
k = arg.split('=')[0]
v = arg[len(k)+1:]
try:
kargs[k] = eval(v)
except:
kargs[k] = v
else:
args += [eval(arg)]
return getattr(methods, values[0])(*args, **kargs)
def preDomRes(outDom, target): # TODO: make faster again by keeping sparse tensors sparse
t = one_hot(target.long(), outDom.size()[1]).to_dense().to_dtype()
tmat = t.unsqueeze(2).matmul(t.unsqueeze(1))
tl = t.unsqueeze(2).expand(-1, -1, tmat.size()[1])
inv_t = eye(tmat.size()[1]).expand(tmat.size()[0], -1, -1)
inv_t = inv_t - tmat
tl = tl.bmm(inv_t)
fst = outDom.unsqueeze(1).matmul(tl).squeeze(1)
snd = outDom.unsqueeze(1).matmul(inv_t).squeeze(1)
return (fst - snd) + t
def mopen(shouldnt, *args, **kargs):
if shouldnt:
import contextlib
return contextlib.suppress()
return open(*args, **kargs)
def file_timestamp():
return str(datetime.now()).replace(":","").replace(" ", "")
def prepareDomainNameForFile(s):
return s.replace(" ", "_").replace(",", "").replace("(", "_").replace(")", "_").replace("=", "_")
# delimited only
def callCC(foo):
class RV(BaseException):
def __init__(self, v):
self.v = v
def cc(x):
raise RV(x)
try:
return foo(cc)
except RV as rv:
return rv.v