--- language: - eu license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Medium eu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 6.226867968778628 pipeline_tag: automatic-speech-recognition --- # Whisper Medium eu This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1067 - Wer: 6.2269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1766 | 0.3596 | 1000 | 0.1877 | 12.7130 | | 0.1372 | 0.7192 | 2000 | 0.1370 | 8.7444 | | 0.0634 | 1.0787 | 3000 | 0.1210 | 7.2108 | | 0.0558 | 1.4383 | 4000 | 0.1119 | 6.5411 | | 0.0631 | 1.7979 | 5000 | 0.1067 | 6.2269 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1