File size: 4,444 Bytes
1ddc3b4
 
b7378f1
 
1ddc3b4
b7378f1
1ddc3b4
 
b7378f1
7af3cc7
 
 
1ddc3b4
 
 
 
 
 
 
 
 
b7378f1
 
1ddc3b4
 
 
 
 
 
 
a2d150e
 
 
d5b6883
 
 
 
ebcb706
d5b6883
7af3cc7
d5b6883
7af3cc7
d5b6883
 
 
a2d150e
 
 
 
7af3cc7
 
 
 
 
 
 
 
 
 
 
 
 
a2d150e
f0d4039
 
 
2706235
 
 
 
 
 
 
339676e
2706235
 
 
 
 
a2d150e
 
 
 
1ddc3b4
 
 
 
 
96cb7de
1ddc3b4
7377682
1ddc3b4
 
 
 
0ee01dc
a5c9c6e
0459356
0ee01dc
bb11d45
0459356
7af3cc7
bb11d45
0459356
7af3cc7
 
a5c9c6e
1ddc3b4
 
 
 
 
 
 
 
 
 
1fb559c
96cb7de
 
 
 
1ddc3b4
0da9c7e
0ee01dc
1ddc3b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
license: apache-2.0
language:
- es
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
- facebook/multilingual_librispeech
- facebook/voxpopuli
metrics:
- wer
model-index:
- name: openai/whisper-medium
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 es
      type: mozilla-foundation/common_voice_11_0
      config: es
      split: test
      args: es
    metrics:
    - name: Wer
      type: wer
      value: 6.346473676004366
    - name: Cer
      type: cer
      value: 2.1391
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: FLEURS ASR
      type: google/fleurs
      config: es_419
      split: test
      args: es
    metrics:
    - name: WER
      type: wer
      value: 4.0266
    - name: Cer
      type: cer
      value: 1.6631
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Multilingual LibriSpeech
      type: facebook/multilingual_librispeech
      config: spanish
      split: test
      args:
        language: es
    metrics:
    - name: WER
      type: wer
      value: 4.6644
    - name: Cer
      type: cer
      value: 1.7056
  - task:
      type: Automatic Speech Recognition
      name: speech-recognition
    dataset:
      name: VoxPopuli
      type: facebook/voxpopuli
      config: es
      split: test
      args:
        language: es
    metrics:
    - name: WER
      type: wer
      value: 8.3668
    - name: Cer
      type: cer
      value: 5.479
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-medium-mix-es

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0, google/fleurs, facebook/multilingual_librispeech and facebook/voxpopuli datasets.
It achieves the following results on the evaluation set:
- Loss: 0.1344
- Wer: 6.3465

Using the [evaluation script](https://github.com/huggingface/community-events/blob/main/whisper-fine-tuning-event/run_eval_whisper_streaming.py) provided in the Whisper Sprint the model achieves these results on the test sets (WER):

- **google/fleurs: 4.0266 %**  
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-es" --dataset="google/fleurs" --config="es_419" --device=0 --language="es")

- **facebook/multilingual_librispeech: 4.6644 %**  
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-es" --dataset="facebook/multilingual_librispeech" --config="spanish" --device=0 --language="es")

- **facebook/voxpopuli: 8.3668 %**  
(python run_eval_whisper_streaming.py --model_id="deepdml/whisper-medium-mix-es" --dataset="facebook/voxpopuli" --config="es" --device=0 --language="es")


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

Training data used:
- **mozilla-foundation/common_voice_11_0:** es, train+validation
- **google/fleurs:** es_419, train
- **facebook/multilingual_librispeech:** spanish, train
- **facebook/voxpopuli:** es, train

Evaluating over test split from mozilla-foundation/common_voice_11_0 dataset.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.266         | 0.2   | 1000 | 0.1657          | 8.0395 |
| 0.1394        | 0.4   | 2000 | 0.1539          | 7.3937 |
| 0.1316        | 0.6   | 3000 | 0.1452          | 6.9656 |
| 0.1165        | 0.8   | 4000 | 0.1392          | 6.5765 |
| 0.2816        | 1.0   | 5000 | 0.1344          | 6.3465 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2