File size: 2,631 Bytes
ed3c146
 
 
 
 
 
5fe11ff
ed3c146
 
 
 
 
 
 
 
 
5fe11ff
ed3c146
 
 
 
 
 
 
5fe11ff
ed3c146
5fe11ff
 
 
 
 
 
 
 
 
 
 
 
 
1ab3f63
 
 
 
 
 
 
 
 
 
 
 
d6af795
ed3c146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6af795
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
language:
- pt
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-medium
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Medium pt
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 17.0
      type: mozilla-foundation/common_voice_17_0
      config: pt
      split: test
      args: pt
    metrics:
    - type: wer
      value: 6.9247738099044085
      name: Wer
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
      config: pt_br
      split: test
    metrics:
    - type: wer
      value: 8.11
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: facebook/multilingual_librispeech
      type: facebook/multilingual_librispeech
      config: portuguese
      split: test
    metrics:
    - type: wer
      value: 9.66
      name: WER
pipeline_tag: automatic-speech-recognition
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium pt

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2757
- Wer: 6.9248

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.1211        | 1.0173 | 1000 | 0.2010          | 7.8295 |
| 0.0393        | 2.0346 | 2000 | 0.2084          | 7.3020 |
| 0.0167        | 3.0519 | 3000 | 0.2243          | 7.0191 |
| 0.0049        | 4.0692 | 4000 | 0.2530          | 6.9807 |
| 0.0018        | 5.0865 | 5000 | 0.2757          | 6.9248 |


### Framework versions

- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1