--- language: - pt license: apache-2.0 tags: - generated_from_trainer base_model: openai/whisper-medium datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Medium pt results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: pt split: test args: pt metrics: - type: wer value: 6.9247738099044085 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: pt_br split: test metrics: - type: wer value: 8.11 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/multilingual_librispeech type: facebook/multilingual_librispeech config: portuguese split: test metrics: - type: wer value: 9.66 name: WER pipeline_tag: automatic-speech-recognition --- # Whisper Medium pt This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2757 - Wer: 6.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.1211 | 1.0173 | 1000 | 0.2010 | 7.8295 | | 0.0393 | 2.0346 | 2000 | 0.2084 | 7.3020 | | 0.0167 | 3.0519 | 3000 | 0.2243 | 7.0191 | | 0.0049 | 4.0692 | 4000 | 0.2530 | 6.9807 | | 0.0018 | 5.0865 | 5000 | 0.2757 | 6.9248 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1