--- language: - eu license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small eu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 9.17402616438858 pipeline_tag: automatic-speech-recognition --- # Whisper Small eu This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1443 - Wer: 9.1740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2128 | 0.7189 | 1000 | 0.2103 | 15.1316 | | 0.1164 | 1.4378 | 2000 | 0.1626 | 11.0218 | | 0.0722 | 2.1567 | 3000 | 0.1474 | 9.6403 | | 0.0696 | 2.8756 | 4000 | 0.1420 | 9.1044 | | 0.0445 | 3.5945 | 5000 | 0.1443 | 9.1740 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1