bayang commited on
Commit
53c0c6d
·
1 Parent(s): 3a7db1e

update readme

Browse files
Files changed (1) hide show
  1. README.md +407 -132
README.md CHANGED
@@ -1,5 +1,8 @@
1
  ---
2
  tags:
 
 
 
3
  - mteb
4
  model-index:
5
  - name: embedder-100p
@@ -29,11 +32,11 @@ model-index:
29
  revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
  metrics:
31
  - type: accuracy
32
- value: 70.40859999999999
33
  - type: ap
34
- value: 64.61614079870762
35
  - type: f1
36
- value: 70.28138858999333
37
  - task:
38
  type: Classification
39
  dataset:
@@ -69,17 +72,17 @@ model-index:
69
  - type: map_at_5
70
  value: 40.398
71
  - type: mrr_at_1
72
- value: 28.377999999999997
73
  - type: mrr_at_10
74
- value: 43.138
75
  - type: mrr_at_100
76
- value: 44.088
77
  - type: mrr_at_1000
78
- value: 44.095
79
  - type: mrr_at_3
80
- value: 37.47
81
  - type: mrr_at_5
82
- value: 40.749
83
  - type: ndcg_at_1
84
  value: 27.311999999999998
85
  - type: ndcg_at_10
@@ -126,7 +129,7 @@ model-index:
126
  revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
  metrics:
128
  - type: v_measure
129
- value: 43.04296157693406
130
  - task:
131
  type: Clustering
132
  dataset:
@@ -137,7 +140,7 @@ model-index:
137
  revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
  metrics:
139
  - type: v_measure
140
- value: 32.376069442373264
141
  - task:
142
  type: Reranking
143
  dataset:
@@ -161,15 +164,15 @@ model-index:
161
  revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
  metrics:
163
  - type: cos_sim_pearson
164
- value: 80.06754584325645
165
  - type: cos_sim_spearman
166
  value: 75.31798123153732
167
  - type: euclidean_pearson
168
- value: 77.70453914618555
169
  - type: euclidean_spearman
170
  value: 74.07578425253767
171
  - type: manhattan_pearson
172
- value: 77.18020595680719
173
  - type: manhattan_spearman
174
  value: 74.10590542079663
175
  - task:
@@ -195,7 +198,7 @@ model-index:
195
  revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
  metrics:
197
  - type: v_measure
198
- value: 37.35544823305565
199
  - task:
200
  type: Clustering
201
  dataset:
@@ -206,7 +209,7 @@ model-index:
206
  revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
  metrics:
208
  - type: v_measure
209
- value: 29.97526476348527
210
  - task:
211
  type: Retrieval
212
  dataset:
@@ -304,7 +307,7 @@ model-index:
304
  - type: mrr_at_100
305
  value: 38.942
306
  - type: mrr_at_1000
307
- value: 38.992
308
  - type: mrr_at_3
309
  value: 35.435
310
  - type: mrr_at_5
@@ -316,7 +319,7 @@ model-index:
316
  - type: ndcg_at_100
317
  value: 43.562
318
  - type: ndcg_at_1000
319
- value: 46.035
320
  - type: ndcg_at_3
321
  value: 33.93
322
  - type: ndcg_at_5
@@ -690,6 +693,75 @@ model-index:
690
  value: 34.489
691
  - type: recall_at_5
692
  value: 40.182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693
  - task:
694
  type: Retrieval
695
  dataset:
@@ -913,7 +985,7 @@ model-index:
913
  - type: map_at_100
914
  value: 28.875
915
  - type: map_at_1000
916
- value: 29.151
917
  - type: map_at_3
918
  value: 24.595
919
  - type: map_at_5
@@ -1186,6 +1258,75 @@ model-index:
1186
  value: 43.470000000000006
1187
  - type: f1
1188
  value: 39.27142511079909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189
  - task:
1190
  type: Retrieval
1191
  dataset:
@@ -1255,6 +1396,75 @@ model-index:
1255
  value: 24.490000000000002
1256
  - type: recall_at_5
1257
  value: 28.621999999999996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258
  - task:
1259
  type: Classification
1260
  dataset:
@@ -1270,6 +1480,75 @@ model-index:
1270
  value: 61.82215741645874
1271
  - type: f1
1272
  value: 67.04790333380426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273
  - task:
1274
  type: Classification
1275
  dataset:
@@ -1332,7 +1611,7 @@ model-index:
1332
  revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1333
  metrics:
1334
  - type: v_measure
1335
- value: 36.5297446116069
1336
  - task:
1337
  type: Clustering
1338
  dataset:
@@ -1343,7 +1622,20 @@ model-index:
1343
  revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1344
  metrics:
1345
  - type: v_measure
1346
- value: 32.93068854285488
 
 
 
 
 
 
 
 
 
 
 
 
 
1347
  - task:
1348
  type: Retrieval
1349
  dataset:
@@ -1366,17 +1658,17 @@ model-index:
1366
  - type: map_at_5
1367
  value: 6.654
1368
  - type: mrr_at_1
1369
- value: 34.365
1370
  - type: mrr_at_10
1371
- value: 43.854
1372
  - type: mrr_at_100
1373
- value: 44.643
1374
  - type: mrr_at_1000
1375
- value: 44.701
1376
  - type: mrr_at_3
1377
- value: 41.589
1378
  - type: mrr_at_5
1379
- value: 43.075
1380
  - type: ndcg_at_1
1381
  value: 31.889
1382
  - type: ndcg_at_10
@@ -1494,63 +1786,63 @@ model-index:
1494
  - type: map_at_1
1495
  value: 67.534
1496
  - type: map_at_10
1497
- value: 81.447
1498
  - type: map_at_100
1499
- value: 82.15299999999999
1500
  - type: map_at_1000
1501
- value: 82.172
1502
  - type: map_at_3
1503
- value: 78.408
1504
  - type: map_at_5
1505
- value: 80.264
1506
  - type: mrr_at_1
1507
- value: 77.75999999999999
1508
  - type: mrr_at_10
1509
- value: 84.602
1510
  - type: mrr_at_100
1511
- value: 84.762
1512
  - type: mrr_at_1000
1513
- value: 84.764
1514
  - type: mrr_at_3
1515
- value: 83.488
1516
  - type: mrr_at_5
1517
- value: 84.21600000000001
1518
  - type: ndcg_at_1
1519
  value: 77.79
1520
  - type: ndcg_at_10
1521
- value: 85.55199999999999
1522
  - type: ndcg_at_100
1523
- value: 87.104
1524
  - type: ndcg_at_1000
1525
- value: 87.259
1526
  - type: ndcg_at_3
1527
- value: 82.396
1528
  - type: ndcg_at_5
1529
- value: 84.065
1530
  - type: precision_at_1
1531
  value: 77.79
1532
  - type: precision_at_10
1533
- value: 13.103000000000002
1534
  - type: precision_at_100
1535
  value: 1.5190000000000001
1536
  - type: precision_at_1000
1537
  value: 0.156
1538
  - type: precision_at_3
1539
- value: 36.153
1540
  - type: precision_at_5
1541
- value: 23.854
1542
  - type: recall_at_1
1543
  value: 67.534
1544
  - type: recall_at_10
1545
- value: 93.57
1546
  - type: recall_at_100
1547
  value: 99.10799999999999
1548
  - type: recall_at_1000
1549
  value: 99.911
1550
  - type: recall_at_3
1551
- value: 84.565
1552
  - type: recall_at_5
1553
- value: 89.242
1554
  - task:
1555
  type: Clustering
1556
  dataset:
@@ -1561,7 +1853,7 @@ model-index:
1561
  revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1562
  metrics:
1563
  - type: v_measure
1564
- value: 50.692859418431055
1565
  - task:
1566
  type: Clustering
1567
  dataset:
@@ -1572,7 +1864,7 @@ model-index:
1572
  revision: 282350215ef01743dc01b456c7f5241fa8937f16
1573
  metrics:
1574
  - type: v_measure
1575
- value: 54.60918566392905
1576
  - task:
1577
  type: Retrieval
1578
  dataset:
@@ -1652,17 +1944,17 @@ model-index:
1652
  revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1653
  metrics:
1654
  - type: cos_sim_pearson
1655
- value: 85.92797781212799
1656
  - type: cos_sim_spearman
1657
- value: 80.91206843308156
1658
  - type: euclidean_pearson
1659
- value: 83.13392453336924
1660
  - type: euclidean_spearman
1661
- value: 80.80408822887594
1662
  - type: manhattan_pearson
1663
- value: 83.02335189403584
1664
  - type: manhattan_spearman
1665
- value: 80.79923937077382
1666
  - task:
1667
  type: STS
1668
  dataset:
@@ -1673,17 +1965,17 @@ model-index:
1673
  revision: a0d554a64d88156834ff5ae9920b964011b16384
1674
  metrics:
1675
  - type: cos_sim_pearson
1676
- value: 85.4017983656709
1677
  - type: cos_sim_spearman
1678
- value: 76.97735367672956
1679
  - type: euclidean_pearson
1680
- value: 81.7824234578701
1681
  - type: euclidean_spearman
1682
- value: 75.28260048723786
1683
  - type: manhattan_pearson
1684
- value: 81.38214845806081
1685
  - type: manhattan_spearman
1686
- value: 74.96457943242224
1687
  - task:
1688
  type: STS
1689
  dataset:
@@ -1694,17 +1986,17 @@ model-index:
1694
  revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1695
  metrics:
1696
  - type: cos_sim_pearson
1697
- value: 81.38943576368895
1698
  - type: cos_sim_spearman
1699
  value: 82.62953855483207
1700
  - type: euclidean_pearson
1701
- value: 82.44174445208601
1702
  - type: euclidean_spearman
1703
- value: 82.82393564259752
1704
  - type: manhattan_pearson
1705
- value: 82.0592576486719
1706
  - type: manhattan_spearman
1707
- value: 82.44019945976245
1708
  - task:
1709
  type: STS
1710
  dataset:
@@ -1715,17 +2007,17 @@ model-index:
1715
  revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1716
  metrics:
1717
  - type: cos_sim_pearson
1718
- value: 81.56920926205309
1719
  - type: cos_sim_spearman
1720
- value: 77.83933445496699
1721
  - type: euclidean_pearson
1722
- value: 81.34174612772163
1723
  - type: euclidean_spearman
1724
- value: 78.05064601571459
1725
  - type: manhattan_pearson
1726
- value: 81.17542466190758
1727
  - type: manhattan_spearman
1728
- value: 77.89655461392648
1729
  - task:
1730
  type: STS
1731
  dataset:
@@ -1736,17 +2028,17 @@ model-index:
1736
  revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1737
  metrics:
1738
  - type: cos_sim_pearson
1739
- value: 84.70673349392224
1740
  - type: cos_sim_spearman
1741
- value: 85.91810021018937
1742
  - type: euclidean_pearson
1743
- value: 85.49668352710347
1744
  - type: euclidean_spearman
1745
- value: 86.07561846419777
1746
  - type: manhattan_pearson
1747
- value: 85.46112249008104
1748
  - type: manhattan_spearman
1749
- value: 86.06360341157644
1750
  - task:
1751
  type: STS
1752
  dataset:
@@ -1757,17 +2049,17 @@ model-index:
1757
  revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1758
  metrics:
1759
  - type: cos_sim_pearson
1760
- value: 78.57362568259491
1761
  - type: cos_sim_spearman
1762
  value: 80.68461073524229
1763
  - type: euclidean_pearson
1764
- value: 81.86974763548425
1765
  - type: euclidean_spearman
1766
- value: 81.95566663477153
1767
  - type: manhattan_pearson
1768
- value: 81.58501328641869
1769
  - type: manhattan_spearman
1770
- value: 81.65934245751299
1771
  - task:
1772
  type: STS
1773
  dataset:
@@ -1778,15 +2070,15 @@ model-index:
1778
  revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1779
  metrics:
1780
  - type: cos_sim_pearson
1781
- value: 89.05177322670748
1782
  - type: cos_sim_spearman
1783
  value: 88.99264497015508
1784
  - type: euclidean_pearson
1785
- value: 88.6014395983479
1786
  - type: euclidean_spearman
1787
  value: 88.417049574577
1788
  - type: manhattan_pearson
1789
- value: 88.71275753473458
1790
  - type: manhattan_spearman
1791
  value: 88.62174073802386
1792
  - task:
@@ -1799,15 +2091,15 @@ model-index:
1799
  revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1800
  metrics:
1801
  - type: cos_sim_pearson
1802
- value: 65.92377340266665
1803
  - type: cos_sim_spearman
1804
  value: 68.25861908141049
1805
  - type: euclidean_pearson
1806
- value: 67.74046333852377
1807
  - type: euclidean_spearman
1808
  value: 67.74440638624723
1809
  - type: manhattan_pearson
1810
- value: 67.72314507899021
1811
  - type: manhattan_spearman
1812
  value: 67.58993746063668
1813
  - task:
@@ -1820,15 +2112,15 @@ model-index:
1820
  revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
1821
  metrics:
1822
  - type: cos_sim_pearson
1823
- value: 84.01280176574436
1824
  - type: cos_sim_spearman
1825
  value: 84.2021805427655
1826
  - type: euclidean_pearson
1827
- value: 85.25937079924432
1828
  - type: euclidean_spearman
1829
  value: 84.7692260813728
1830
  - type: manhattan_pearson
1831
- value: 85.20370061224156
1832
  - type: manhattan_spearman
1833
  value: 84.68261435873887
1834
  - task:
@@ -1935,7 +2227,7 @@ model-index:
1935
  - type: dot_accuracy
1936
  value: 99.6009900990099
1937
  - type: dot_ap
1938
- value: 85.37859661864812
1939
  - type: dot_f1
1940
  value: 79.68285431119922
1941
  - type: dot_precision
@@ -1945,7 +2237,7 @@ model-index:
1945
  - type: euclidean_accuracy
1946
  value: 99.66435643564357
1947
  - type: euclidean_ap
1948
- value: 90.28983244955693
1949
  - type: euclidean_f1
1950
  value: 82.47925817471938
1951
  - type: euclidean_precision
@@ -1955,7 +2247,7 @@ model-index:
1955
  - type: manhattan_accuracy
1956
  value: 99.65247524752475
1957
  - type: manhattan_ap
1958
- value: 89.75455639322132
1959
  - type: manhattan_f1
1960
  value: 81.63682864450128
1961
  - type: manhattan_precision
@@ -1978,7 +2270,7 @@ model-index:
1978
  revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
1979
  metrics:
1980
  - type: v_measure
1981
- value: 53.295453205851
1982
  - task:
1983
  type: Clustering
1984
  dataset:
@@ -1989,7 +2281,7 @@ model-index:
1989
  revision: 815ca46b2622cec33ccafc3735d572c266efdb44
1990
  metrics:
1991
  - type: v_measure
1992
- value: 32.64179363201445
1993
  - task:
1994
  type: Reranking
1995
  dataset:
@@ -2000,26 +2292,9 @@ model-index:
2000
  revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2001
  metrics:
2002
  - type: map
2003
- value: 47.103383708653894
2004
  - type: mrr
2005
- value: 47.64253618113912
2006
- - task:
2007
- type: Summarization
2008
- dataset:
2009
- type: mteb/summeval
2010
- name: MTEB SummEval
2011
- config: default
2012
- split: test
2013
- revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2014
- metrics:
2015
- - type: cos_sim_pearson
2016
- value: 30.794109958863856
2017
- - type: cos_sim_spearman
2018
- value: 32.38893238877061
2019
- - type: dot_pearson
2020
- value: 25.573206015466006
2021
- - type: dot_spearman
2022
- value: 26.69770548172811
2023
  - task:
2024
  type: Retrieval
2025
  dataset:
@@ -2168,11 +2443,11 @@ model-index:
2168
  revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2169
  metrics:
2170
  - type: accuracy
2171
- value: 67.4808
2172
  - type: ap
2173
- value: 12.474767995994732
2174
  - type: f1
2175
- value: 51.7199877262739
2176
  - task:
2177
  type: Classification
2178
  dataset:
@@ -2196,7 +2471,7 @@ model-index:
2196
  revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2197
  metrics:
2198
  - type: v_measure
2199
- value: 45.75265994155206
2200
  - task:
2201
  type: PairClassification
2202
  dataset:
@@ -2209,7 +2484,7 @@ model-index:
2209
  - type: cos_sim_accuracy
2210
  value: 84.16284198605233
2211
  - type: cos_sim_ap
2212
- value: 67.7713341907894
2213
  - type: cos_sim_f1
2214
  value: 63.007767732076914
2215
  - type: cos_sim_precision
@@ -2219,7 +2494,7 @@ model-index:
2219
  - type: dot_accuracy
2220
  value: 80.60439887941826
2221
  - type: dot_ap
2222
- value: 55.17279708911177
2223
  - type: dot_f1
2224
  value: 55.023250784038055
2225
  - type: dot_precision
@@ -2229,7 +2504,7 @@ model-index:
2229
  - type: euclidean_accuracy
2230
  value: 84.75889610776659
2231
  - type: euclidean_ap
2232
- value: 69.339283557053
2233
  - type: euclidean_f1
2234
  value: 64.72887151929653
2235
  - type: euclidean_precision
@@ -2239,7 +2514,7 @@ model-index:
2239
  - type: manhattan_accuracy
2240
  value: 84.84234368480658
2241
  - type: manhattan_ap
2242
- value: 69.50781739580388
2243
  - type: manhattan_f1
2244
  value: 64.78766430738119
2245
  - type: manhattan_precision
@@ -2249,7 +2524,7 @@ model-index:
2249
  - type: max_accuracy
2250
  value: 84.84234368480658
2251
  - type: max_ap
2252
- value: 69.50781739580388
2253
  - type: max_f1
2254
  value: 64.78766430738119
2255
  - task:
@@ -2264,7 +2539,7 @@ model-index:
2264
  - type: cos_sim_accuracy
2265
  value: 88.46198626149726
2266
  - type: cos_sim_ap
2267
- value: 84.64910523561979
2268
  - type: cos_sim_f1
2269
  value: 77.18601251827143
2270
  - type: cos_sim_precision
@@ -2274,7 +2549,7 @@ model-index:
2274
  - type: dot_accuracy
2275
  value: 86.79512554818179
2276
  - type: dot_ap
2277
- value: 80.43209362097343
2278
  - type: dot_f1
2279
  value: 74.18943791589976
2280
  - type: dot_precision
@@ -2284,7 +2559,7 @@ model-index:
2284
  - type: euclidean_accuracy
2285
  value: 88.2368921488726
2286
  - type: euclidean_ap
2287
- value: 84.27906162916011
2288
  - type: euclidean_f1
2289
  value: 76.62216238453198
2290
  - type: euclidean_precision
@@ -2294,7 +2569,7 @@ model-index:
2294
  - type: manhattan_accuracy
2295
  value: 88.29122521054062
2296
  - type: manhattan_ap
2297
- value: 84.2549146077175
2298
  - type: manhattan_f1
2299
  value: 76.60077590984667
2300
  - type: manhattan_precision
@@ -2304,7 +2579,7 @@ model-index:
2304
  - type: max_accuracy
2305
  value: 88.46198626149726
2306
  - type: max_ap
2307
- value: 84.64910523561979
2308
  - type: max_f1
2309
  value: 77.18601251827143
2310
  ---
 
1
  ---
2
  tags:
3
+ - feature-extraction
4
+ - sentence-similarity
5
+ - transformers
6
  - mteb
7
  model-index:
8
  - name: embedder-100p
 
32
  revision: e2d317d38cd51312af73b3d32a06d1a08b442046
33
  metrics:
34
  - type: accuracy
35
+ value: 70.40857500000001
36
  - type: ap
37
+ value: 64.61611594622543
38
  - type: f1
39
+ value: 70.28136292034776
40
  - task:
41
  type: Classification
42
  dataset:
 
72
  - type: map_at_5
73
  value: 40.398
74
  - type: mrr_at_1
75
+ value: 28.165000000000003
76
  - type: mrr_at_10
77
+ value: 43.05
78
  - type: mrr_at_100
79
+ value: 43.994
80
  - type: mrr_at_1000
81
+ value: 44.0
82
  - type: mrr_at_3
83
+ value: 37.376
84
  - type: mrr_at_5
85
+ value: 40.665
86
  - type: ndcg_at_1
87
  value: 27.311999999999998
88
  - type: ndcg_at_10
 
129
  revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
130
  metrics:
131
  - type: v_measure
132
+ value: 42.899186071418946
133
  - task:
134
  type: Clustering
135
  dataset:
 
140
  revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
141
  metrics:
142
  - type: v_measure
143
+ value: 32.44851270109027
144
  - task:
145
  type: Reranking
146
  dataset:
 
164
  revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
165
  metrics:
166
  - type: cos_sim_pearson
167
+ value: 80.06755261269532
168
  - type: cos_sim_spearman
169
  value: 75.31798123153732
170
  - type: euclidean_pearson
171
+ value: 77.70454789166935
172
  - type: euclidean_spearman
173
  value: 74.07578425253767
174
  - type: manhattan_pearson
175
+ value: 77.18021593857006
176
  - type: manhattan_spearman
177
  value: 74.10590542079663
178
  - task:
 
198
  revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
199
  metrics:
200
  - type: v_measure
201
+ value: 37.236246179832975
202
  - task:
203
  type: Clustering
204
  dataset:
 
209
  revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
210
  metrics:
211
  - type: v_measure
212
+ value: 29.75182197424716
213
  - task:
214
  type: Retrieval
215
  dataset:
 
307
  - type: mrr_at_100
308
  value: 38.942
309
  - type: mrr_at_1000
310
+ value: 38.993
311
  - type: mrr_at_3
312
  value: 35.435
313
  - type: mrr_at_5
 
319
  - type: ndcg_at_100
320
  value: 43.562
321
  - type: ndcg_at_1000
322
+ value: 46.036
323
  - type: ndcg_at_3
324
  value: 33.93
325
  - type: ndcg_at_5
 
693
  value: 34.489
694
  - type: recall_at_5
695
  value: 40.182
696
+ - task:
697
+ type: Retrieval
698
+ dataset:
699
+ type: BeIR/cqadupstack
700
+ name: MTEB CQADupstackRetrieval
701
+ config: default
702
+ split: test
703
+ revision: None
704
+ metrics:
705
+ - type: map_at_1
706
+ value: 21.159999999999997
707
+ - type: map_at_10
708
+ value: 29.421333333333337
709
+ - type: map_at_100
710
+ value: 30.61058333333333
711
+ - type: map_at_1000
712
+ value: 30.742416666666667
713
+ - type: map_at_3
714
+ value: 26.745833333333337
715
+ - type: map_at_5
716
+ value: 28.20291666666667
717
+ - type: mrr_at_1
718
+ value: 25.308249999999997
719
+ - type: mrr_at_10
720
+ value: 33.21275
721
+ - type: mrr_at_100
722
+ value: 34.09341666666666
723
+ - type: mrr_at_1000
724
+ value: 34.163000000000004
725
+ - type: mrr_at_3
726
+ value: 30.81675
727
+ - type: mrr_at_5
728
+ value: 32.16816666666667
729
+ - type: ndcg_at_1
730
+ value: 25.308249999999997
731
+ - type: ndcg_at_10
732
+ value: 34.46208333333333
733
+ - type: ndcg_at_100
734
+ value: 39.77183333333334
735
+ - type: ndcg_at_1000
736
+ value: 42.461916666666674
737
+ - type: ndcg_at_3
738
+ value: 29.797916666666662
739
+ - type: ndcg_at_5
740
+ value: 31.935166666666664
741
+ - type: precision_at_1
742
+ value: 25.308249999999997
743
+ - type: precision_at_10
744
+ value: 6.260916666666666
745
+ - type: precision_at_100
746
+ value: 1.0716666666666665
747
+ - type: precision_at_1000
748
+ value: 0.15025000000000002
749
+ - type: precision_at_3
750
+ value: 13.926916666666667
751
+ - type: precision_at_5
752
+ value: 10.043916666666664
753
+ - type: recall_at_1
754
+ value: 21.159999999999997
755
+ - type: recall_at_10
756
+ value: 45.61408333333334
757
+ - type: recall_at_100
758
+ value: 69.26583333333332
759
+ - type: recall_at_1000
760
+ value: 88.22541666666667
761
+ - type: recall_at_3
762
+ value: 32.67691666666666
763
+ - type: recall_at_5
764
+ value: 38.12716666666667
765
  - task:
766
  type: Retrieval
767
  dataset:
 
985
  - type: map_at_100
986
  value: 28.875
987
  - type: map_at_1000
988
+ value: 29.152
989
  - type: map_at_3
990
  value: 24.595
991
  - type: map_at_5
 
1258
  value: 43.470000000000006
1259
  - type: f1
1260
  value: 39.27142511079909
1261
+ - task:
1262
+ type: Retrieval
1263
+ dataset:
1264
+ type: fever
1265
+ name: MTEB FEVER
1266
+ config: default
1267
+ split: test
1268
+ revision: None
1269
+ metrics:
1270
+ - type: map_at_1
1271
+ value: 37.468
1272
+ - type: map_at_10
1273
+ value: 49.652
1274
+ - type: map_at_100
1275
+ value: 50.314
1276
+ - type: map_at_1000
1277
+ value: 50.346999999999994
1278
+ - type: map_at_3
1279
+ value: 46.592
1280
+ - type: map_at_5
1281
+ value: 48.553000000000004
1282
+ - type: mrr_at_1
1283
+ value: 40.384
1284
+ - type: mrr_at_10
1285
+ value: 53.03099999999999
1286
+ - type: mrr_at_100
1287
+ value: 53.629000000000005
1288
+ - type: mrr_at_1000
1289
+ value: 53.65299999999999
1290
+ - type: mrr_at_3
1291
+ value: 49.967
1292
+ - type: mrr_at_5
1293
+ value: 51.951
1294
+ - type: ndcg_at_1
1295
+ value: 40.384
1296
+ - type: ndcg_at_10
1297
+ value: 56.318
1298
+ - type: ndcg_at_100
1299
+ value: 59.43000000000001
1300
+ - type: ndcg_at_1000
1301
+ value: 60.266
1302
+ - type: ndcg_at_3
1303
+ value: 50.341
1304
+ - type: ndcg_at_5
1305
+ value: 53.756
1306
+ - type: precision_at_1
1307
+ value: 40.384
1308
+ - type: precision_at_10
1309
+ value: 8.062999999999999
1310
+ - type: precision_at_100
1311
+ value: 0.972
1312
+ - type: precision_at_1000
1313
+ value: 0.106
1314
+ - type: precision_at_3
1315
+ value: 20.897
1316
+ - type: precision_at_5
1317
+ value: 14.374
1318
+ - type: recall_at_1
1319
+ value: 37.468
1320
+ - type: recall_at_10
1321
+ value: 73.68900000000001
1322
+ - type: recall_at_100
1323
+ value: 87.844
1324
+ - type: recall_at_1000
1325
+ value: 94.098
1326
+ - type: recall_at_3
1327
+ value: 57.768
1328
+ - type: recall_at_5
1329
+ value: 65.979
1330
  - task:
1331
  type: Retrieval
1332
  dataset:
 
1396
  value: 24.490000000000002
1397
  - type: recall_at_5
1398
  value: 28.621999999999996
1399
+ - task:
1400
+ type: Retrieval
1401
+ dataset:
1402
+ type: hotpotqa
1403
+ name: MTEB HotpotQA
1404
+ config: default
1405
+ split: test
1406
+ revision: None
1407
+ metrics:
1408
+ - type: map_at_1
1409
+ value: 24.659
1410
+ - type: map_at_10
1411
+ value: 33.622
1412
+ - type: map_at_100
1413
+ value: 34.488
1414
+ - type: map_at_1000
1415
+ value: 34.58
1416
+ - type: map_at_3
1417
+ value: 31.317
1418
+ - type: map_at_5
1419
+ value: 32.689
1420
+ - type: mrr_at_1
1421
+ value: 49.318
1422
+ - type: mrr_at_10
1423
+ value: 57.028999999999996
1424
+ - type: mrr_at_100
1425
+ value: 57.567
1426
+ - type: mrr_at_1000
1427
+ value: 57.603
1428
+ - type: mrr_at_3
1429
+ value: 55.152
1430
+ - type: mrr_at_5
1431
+ value: 56.289
1432
+ - type: ndcg_at_1
1433
+ value: 49.318
1434
+ - type: ndcg_at_10
1435
+ value: 42.091
1436
+ - type: ndcg_at_100
1437
+ value: 45.812999999999995
1438
+ - type: ndcg_at_1000
1439
+ value: 47.902
1440
+ - type: ndcg_at_3
1441
+ value: 38.012
1442
+ - type: ndcg_at_5
1443
+ value: 40.160000000000004
1444
+ - type: precision_at_1
1445
+ value: 49.318
1446
+ - type: precision_at_10
1447
+ value: 8.921
1448
+ - type: precision_at_100
1449
+ value: 1.189
1450
+ - type: precision_at_1000
1451
+ value: 0.147
1452
+ - type: precision_at_3
1453
+ value: 23.655
1454
+ - type: precision_at_5
1455
+ value: 15.897
1456
+ - type: recall_at_1
1457
+ value: 24.659
1458
+ - type: recall_at_10
1459
+ value: 44.605
1460
+ - type: recall_at_100
1461
+ value: 59.453
1462
+ - type: recall_at_1000
1463
+ value: 73.40299999999999
1464
+ - type: recall_at_3
1465
+ value: 35.483
1466
+ - type: recall_at_5
1467
+ value: 39.743
1468
  - task:
1469
  type: Classification
1470
  dataset:
 
1480
  value: 61.82215741645874
1481
  - type: f1
1482
  value: 67.04790333380426
1483
+ - task:
1484
+ type: Retrieval
1485
+ dataset:
1486
+ type: msmarco
1487
+ name: MTEB MSMARCO
1488
+ config: default
1489
+ split: dev
1490
+ revision: None
1491
+ metrics:
1492
+ - type: map_at_1
1493
+ value: 13.635
1494
+ - type: map_at_10
1495
+ value: 22.412000000000003
1496
+ - type: map_at_100
1497
+ value: 23.622
1498
+ - type: map_at_1000
1499
+ value: 23.707
1500
+ - type: map_at_3
1501
+ value: 19.368
1502
+ - type: map_at_5
1503
+ value: 21.095
1504
+ - type: mrr_at_1
1505
+ value: 14.04
1506
+ - type: mrr_at_10
1507
+ value: 22.858
1508
+ - type: mrr_at_100
1509
+ value: 24.049
1510
+ - type: mrr_at_1000
1511
+ value: 24.127000000000002
1512
+ - type: mrr_at_3
1513
+ value: 19.852
1514
+ - type: mrr_at_5
1515
+ value: 21.552
1516
+ - type: ndcg_at_1
1517
+ value: 14.04
1518
+ - type: ndcg_at_10
1519
+ value: 27.676000000000002
1520
+ - type: ndcg_at_100
1521
+ value: 33.917
1522
+ - type: ndcg_at_1000
1523
+ value: 36.217
1524
+ - type: ndcg_at_3
1525
+ value: 21.432000000000002
1526
+ - type: ndcg_at_5
1527
+ value: 24.519
1528
+ - type: precision_at_1
1529
+ value: 14.04
1530
+ - type: precision_at_10
1531
+ value: 4.585999999999999
1532
+ - type: precision_at_100
1533
+ value: 0.776
1534
+ - type: precision_at_1000
1535
+ value: 0.097
1536
+ - type: precision_at_3
1537
+ value: 9.298
1538
+ - type: precision_at_5
1539
+ value: 7.135
1540
+ - type: recall_at_1
1541
+ value: 13.635
1542
+ - type: recall_at_10
1543
+ value: 44.015
1544
+ - type: recall_at_100
1545
+ value: 73.756
1546
+ - type: recall_at_1000
1547
+ value: 91.743
1548
+ - type: recall_at_3
1549
+ value: 26.941
1550
+ - type: recall_at_5
1551
+ value: 34.378
1552
  - task:
1553
  type: Classification
1554
  dataset:
 
1611
  revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1612
  metrics:
1613
  - type: v_measure
1614
+ value: 36.646200212660744
1615
  - task:
1616
  type: Clustering
1617
  dataset:
 
1622
  revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1623
  metrics:
1624
  - type: v_measure
1625
+ value: 32.57381797665868
1626
+ - task:
1627
+ type: Reranking
1628
+ dataset:
1629
+ type: mteb/mind_small
1630
+ name: MTEB MindSmallReranking
1631
+ config: default
1632
+ split: test
1633
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1634
+ metrics:
1635
+ - type: map
1636
+ value: 30.54815546178676
1637
+ - type: mrr
1638
+ value: 31.40311212966208
1639
  - task:
1640
  type: Retrieval
1641
  dataset:
 
1658
  - type: map_at_5
1659
  value: 6.654
1660
  - type: mrr_at_1
1661
+ value: 33.745999999999995
1662
  - type: mrr_at_10
1663
+ value: 43.513000000000005
1664
  - type: mrr_at_100
1665
+ value: 44.330999999999996
1666
  - type: mrr_at_1000
1667
+ value: 44.388
1668
  - type: mrr_at_3
1669
+ value: 41.28
1670
  - type: mrr_at_5
1671
+ value: 42.766
1672
  - type: ndcg_at_1
1673
  value: 31.889
1674
  - type: ndcg_at_10
 
1786
  - type: map_at_1
1787
  value: 67.534
1788
  - type: map_at_10
1789
+ value: 81.449
1790
  - type: map_at_100
1791
+ value: 82.15400000000001
1792
  - type: map_at_1000
1793
+ value: 82.173
1794
  - type: map_at_3
1795
+ value: 78.412
1796
  - type: map_at_5
1797
+ value: 80.268
1798
  - type: mrr_at_1
1799
+ value: 77.77
1800
  - type: mrr_at_10
1801
+ value: 84.60499999999999
1802
  - type: mrr_at_100
1803
+ value: 84.765
1804
  - type: mrr_at_1000
1805
+ value: 84.76700000000001
1806
  - type: mrr_at_3
1807
+ value: 83.493
1808
  - type: mrr_at_5
1809
+ value: 84.221
1810
  - type: ndcg_at_1
1811
  value: 77.79
1812
  - type: ndcg_at_10
1813
+ value: 85.555
1814
  - type: ndcg_at_100
1815
+ value: 87.105
1816
  - type: ndcg_at_1000
1817
+ value: 87.261
1818
  - type: ndcg_at_3
1819
+ value: 82.401
1820
  - type: ndcg_at_5
1821
+ value: 84.071
1822
  - type: precision_at_1
1823
  value: 77.79
1824
  - type: precision_at_10
1825
+ value: 13.104
1826
  - type: precision_at_100
1827
  value: 1.5190000000000001
1828
  - type: precision_at_1000
1829
  value: 0.156
1830
  - type: precision_at_3
1831
+ value: 36.157000000000004
1832
  - type: precision_at_5
1833
+ value: 23.86
1834
  - type: recall_at_1
1835
  value: 67.534
1836
  - type: recall_at_10
1837
+ value: 93.573
1838
  - type: recall_at_100
1839
  value: 99.10799999999999
1840
  - type: recall_at_1000
1841
  value: 99.911
1842
  - type: recall_at_3
1843
+ value: 84.575
1844
  - type: recall_at_5
1845
+ value: 89.251
1846
  - task:
1847
  type: Clustering
1848
  dataset:
 
1853
  revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1854
  metrics:
1855
  - type: v_measure
1856
+ value: 50.622402916164575
1857
  - task:
1858
  type: Clustering
1859
  dataset:
 
1864
  revision: 282350215ef01743dc01b456c7f5241fa8937f16
1865
  metrics:
1866
  - type: v_measure
1867
+ value: 54.43689895218044
1868
  - task:
1869
  type: Retrieval
1870
  dataset:
 
1944
  revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1945
  metrics:
1946
  - type: cos_sim_pearson
1947
+ value: 85.92797679109452
1948
  - type: cos_sim_spearman
1949
+ value: 80.91205372065706
1950
  - type: euclidean_pearson
1951
+ value: 83.1339233055303
1952
  - type: euclidean_spearman
1953
+ value: 80.80406858672507
1954
  - type: manhattan_pearson
1955
+ value: 83.023350668501
1956
  - type: manhattan_spearman
1957
+ value: 80.79924041758802
1958
  - task:
1959
  type: STS
1960
  dataset:
 
1965
  revision: a0d554a64d88156834ff5ae9920b964011b16384
1966
  metrics:
1967
  - type: cos_sim_pearson
1968
+ value: 85.40179876416202
1969
  - type: cos_sim_spearman
1970
+ value: 76.97735281189986
1971
  - type: euclidean_pearson
1972
+ value: 81.78242131839902
1973
  - type: euclidean_spearman
1974
+ value: 75.2853626575815
1975
  - type: manhattan_pearson
1976
+ value: 81.38214640501
1977
  - type: manhattan_spearman
1978
+ value: 74.96725680962342
1979
  - task:
1980
  type: STS
1981
  dataset:
 
1986
  revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1987
  metrics:
1988
  - type: cos_sim_pearson
1989
+ value: 81.38943723638555
1990
  - type: cos_sim_spearman
1991
  value: 82.62953855483207
1992
  - type: euclidean_pearson
1993
+ value: 82.4417464172415
1994
  - type: euclidean_spearman
1995
+ value: 82.8241086805702
1996
  - type: manhattan_pearson
1997
+ value: 82.05925934320744
1998
  - type: manhattan_spearman
1999
+ value: 82.44019953304266
2000
  - task:
2001
  type: STS
2002
  dataset:
 
2007
  revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2008
  metrics:
2009
  - type: cos_sim_pearson
2010
+ value: 81.56920959786761
2011
  - type: cos_sim_spearman
2012
+ value: 77.83933203825715
2013
  - type: euclidean_pearson
2014
+ value: 81.34174603327101
2015
  - type: euclidean_spearman
2016
+ value: 78.05064087128034
2017
  - type: manhattan_pearson
2018
+ value: 81.1754246859513
2019
  - type: manhattan_spearman
2020
+ value: 77.8965324094323
2021
  - task:
2022
  type: STS
2023
  dataset:
 
2028
  revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2029
  metrics:
2030
  - type: cos_sim_pearson
2031
+ value: 84.70673290528633
2032
  - type: cos_sim_spearman
2033
+ value: 85.918072169933
2034
  - type: euclidean_pearson
2035
+ value: 85.49668339564212
2036
  - type: euclidean_spearman
2037
+ value: 86.07562791847965
2038
  - type: manhattan_pearson
2039
+ value: 85.46112200749786
2040
  - type: manhattan_spearman
2041
+ value: 86.06360174588102
2042
  - task:
2043
  type: STS
2044
  dataset:
 
2049
  revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2050
  metrics:
2051
  - type: cos_sim_pearson
2052
+ value: 78.57362584144626
2053
  - type: cos_sim_spearman
2054
  value: 80.68461073524229
2055
  - type: euclidean_pearson
2056
+ value: 81.86974700030184
2057
  - type: euclidean_spearman
2058
+ value: 81.9556672243023
2059
  - type: manhattan_pearson
2060
+ value: 81.58501319903948
2061
  - type: manhattan_spearman
2062
+ value: 81.65934304491222
2063
  - task:
2064
  type: STS
2065
  dataset:
 
2070
  revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2071
  metrics:
2072
  - type: cos_sim_pearson
2073
+ value: 89.0517739143147
2074
  - type: cos_sim_spearman
2075
  value: 88.99264497015508
2076
  - type: euclidean_pearson
2077
+ value: 88.60143851830212
2078
  - type: euclidean_spearman
2079
  value: 88.417049574577
2080
  - type: manhattan_pearson
2081
+ value: 88.71275731832226
2082
  - type: manhattan_spearman
2083
  value: 88.62174073802386
2084
  - task:
 
2091
  revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2092
  metrics:
2093
  - type: cos_sim_pearson
2094
+ value: 65.92377536840165
2095
  - type: cos_sim_spearman
2096
  value: 68.25861908141049
2097
  - type: euclidean_pearson
2098
+ value: 67.74046365058068
2099
  - type: euclidean_spearman
2100
  value: 67.74440638624723
2101
  - type: manhattan_pearson
2102
+ value: 67.72314553247108
2103
  - type: manhattan_spearman
2104
  value: 67.58993746063668
2105
  - task:
 
2112
  revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2113
  metrics:
2114
  - type: cos_sim_pearson
2115
+ value: 84.01280212650944
2116
  - type: cos_sim_spearman
2117
  value: 84.2021805427655
2118
  - type: euclidean_pearson
2119
+ value: 85.2593711183253
2120
  - type: euclidean_spearman
2121
  value: 84.7692260813728
2122
  - type: manhattan_pearson
2123
+ value: 85.20370142077513
2124
  - type: manhattan_spearman
2125
  value: 84.68261435873887
2126
  - task:
 
2227
  - type: dot_accuracy
2228
  value: 99.6009900990099
2229
  - type: dot_ap
2230
+ value: 85.37859415933599
2231
  - type: dot_f1
2232
  value: 79.68285431119922
2233
  - type: dot_precision
 
2237
  - type: euclidean_accuracy
2238
  value: 99.66435643564357
2239
  - type: euclidean_ap
2240
+ value: 90.28983244955695
2241
  - type: euclidean_f1
2242
  value: 82.47925817471938
2243
  - type: euclidean_precision
 
2247
  - type: manhattan_accuracy
2248
  value: 99.65247524752475
2249
  - type: manhattan_ap
2250
+ value: 89.75455076116366
2251
  - type: manhattan_f1
2252
  value: 81.63682864450128
2253
  - type: manhattan_precision
 
2270
  revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2271
  metrics:
2272
  - type: v_measure
2273
+ value: 54.25773656414605
2274
  - task:
2275
  type: Clustering
2276
  dataset:
 
2281
  revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2282
  metrics:
2283
  - type: v_measure
2284
+ value: 32.52034918177213
2285
  - task:
2286
  type: Reranking
2287
  dataset:
 
2292
  revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2293
  metrics:
2294
  - type: map
2295
+ value: 47.10460797458404
2296
  - type: mrr
2297
+ value: 47.67126358119005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2298
  - task:
2299
  type: Retrieval
2300
  dataset:
 
2443
  revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2444
  metrics:
2445
  - type: accuracy
2446
+ value: 67.481
2447
  - type: ap
2448
+ value: 12.474830532963725
2449
  - type: f1
2450
+ value: 51.720124230716834
2451
  - task:
2452
  type: Classification
2453
  dataset:
 
2471
  revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2472
  metrics:
2473
  - type: v_measure
2474
+ value: 45.695133575997474
2475
  - task:
2476
  type: PairClassification
2477
  dataset:
 
2484
  - type: cos_sim_accuracy
2485
  value: 84.16284198605233
2486
  - type: cos_sim_ap
2487
+ value: 67.77133994574282
2488
  - type: cos_sim_f1
2489
  value: 63.007767732076914
2490
  - type: cos_sim_precision
 
2494
  - type: dot_accuracy
2495
  value: 80.60439887941826
2496
  - type: dot_ap
2497
+ value: 55.17278808505333
2498
  - type: dot_f1
2499
  value: 55.023250784038055
2500
  - type: dot_precision
 
2504
  - type: euclidean_accuracy
2505
  value: 84.75889610776659
2506
  - type: euclidean_ap
2507
+ value: 69.33925609880741
2508
  - type: euclidean_f1
2509
  value: 64.72887151929653
2510
  - type: euclidean_precision
 
2514
  - type: manhattan_accuracy
2515
  value: 84.84234368480658
2516
  - type: manhattan_ap
2517
+ value: 69.50780726475959
2518
  - type: manhattan_f1
2519
  value: 64.78766430738119
2520
  - type: manhattan_precision
 
2524
  - type: max_accuracy
2525
  value: 84.84234368480658
2526
  - type: max_ap
2527
+ value: 69.50780726475959
2528
  - type: max_f1
2529
  value: 64.78766430738119
2530
  - task:
 
2539
  - type: cos_sim_accuracy
2540
  value: 88.46198626149726
2541
  - type: cos_sim_ap
2542
+ value: 84.64911720373662
2543
  - type: cos_sim_f1
2544
  value: 77.18601251827143
2545
  - type: cos_sim_precision
 
2549
  - type: dot_accuracy
2550
  value: 86.79512554818179
2551
  - type: dot_ap
2552
+ value: 80.43213280609042
2553
  - type: dot_f1
2554
  value: 74.18943791589976
2555
  - type: dot_precision
 
2559
  - type: euclidean_accuracy
2560
  value: 88.2368921488726
2561
  - type: euclidean_ap
2562
+ value: 84.2791000321804
2563
  - type: euclidean_f1
2564
  value: 76.62216238453198
2565
  - type: euclidean_precision
 
2569
  - type: manhattan_accuracy
2570
  value: 88.29122521054062
2571
  - type: manhattan_ap
2572
+ value: 84.25495067571485
2573
  - type: manhattan_f1
2574
  value: 76.60077590984667
2575
  - type: manhattan_precision
 
2579
  - type: max_accuracy
2580
  value: 88.46198626149726
2581
  - type: max_ap
2582
+ value: 84.64911720373662
2583
  - type: max_f1
2584
  value: 77.18601251827143
2585
  ---