update readme
Browse files
README.md
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
---
|
2 |
tags:
|
|
|
|
|
|
|
3 |
- mteb
|
4 |
model-index:
|
5 |
- name: embedder-100p
|
@@ -29,11 +32,11 @@ model-index:
|
|
29 |
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
30 |
metrics:
|
31 |
- type: accuracy
|
32 |
-
value: 70.
|
33 |
- type: ap
|
34 |
-
value: 64.
|
35 |
- type: f1
|
36 |
-
value: 70.
|
37 |
- task:
|
38 |
type: Classification
|
39 |
dataset:
|
@@ -69,17 +72,17 @@ model-index:
|
|
69 |
- type: map_at_5
|
70 |
value: 40.398
|
71 |
- type: mrr_at_1
|
72 |
-
value: 28.
|
73 |
- type: mrr_at_10
|
74 |
-
value: 43.
|
75 |
- type: mrr_at_100
|
76 |
-
value:
|
77 |
- type: mrr_at_1000
|
78 |
-
value: 44.
|
79 |
- type: mrr_at_3
|
80 |
-
value: 37.
|
81 |
- type: mrr_at_5
|
82 |
-
value: 40.
|
83 |
- type: ndcg_at_1
|
84 |
value: 27.311999999999998
|
85 |
- type: ndcg_at_10
|
@@ -126,7 +129,7 @@ model-index:
|
|
126 |
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
127 |
metrics:
|
128 |
- type: v_measure
|
129 |
-
value:
|
130 |
- task:
|
131 |
type: Clustering
|
132 |
dataset:
|
@@ -137,7 +140,7 @@ model-index:
|
|
137 |
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
138 |
metrics:
|
139 |
- type: v_measure
|
140 |
-
value: 32.
|
141 |
- task:
|
142 |
type: Reranking
|
143 |
dataset:
|
@@ -161,15 +164,15 @@ model-index:
|
|
161 |
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
162 |
metrics:
|
163 |
- type: cos_sim_pearson
|
164 |
-
value: 80.
|
165 |
- type: cos_sim_spearman
|
166 |
value: 75.31798123153732
|
167 |
- type: euclidean_pearson
|
168 |
-
value: 77.
|
169 |
- type: euclidean_spearman
|
170 |
value: 74.07578425253767
|
171 |
- type: manhattan_pearson
|
172 |
-
value: 77.
|
173 |
- type: manhattan_spearman
|
174 |
value: 74.10590542079663
|
175 |
- task:
|
@@ -195,7 +198,7 @@ model-index:
|
|
195 |
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
196 |
metrics:
|
197 |
- type: v_measure
|
198 |
-
value: 37.
|
199 |
- task:
|
200 |
type: Clustering
|
201 |
dataset:
|
@@ -206,7 +209,7 @@ model-index:
|
|
206 |
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
207 |
metrics:
|
208 |
- type: v_measure
|
209 |
-
value: 29.
|
210 |
- task:
|
211 |
type: Retrieval
|
212 |
dataset:
|
@@ -304,7 +307,7 @@ model-index:
|
|
304 |
- type: mrr_at_100
|
305 |
value: 38.942
|
306 |
- type: mrr_at_1000
|
307 |
-
value: 38.
|
308 |
- type: mrr_at_3
|
309 |
value: 35.435
|
310 |
- type: mrr_at_5
|
@@ -316,7 +319,7 @@ model-index:
|
|
316 |
- type: ndcg_at_100
|
317 |
value: 43.562
|
318 |
- type: ndcg_at_1000
|
319 |
-
value: 46.
|
320 |
- type: ndcg_at_3
|
321 |
value: 33.93
|
322 |
- type: ndcg_at_5
|
@@ -690,6 +693,75 @@ model-index:
|
|
690 |
value: 34.489
|
691 |
- type: recall_at_5
|
692 |
value: 40.182
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
693 |
- task:
|
694 |
type: Retrieval
|
695 |
dataset:
|
@@ -913,7 +985,7 @@ model-index:
|
|
913 |
- type: map_at_100
|
914 |
value: 28.875
|
915 |
- type: map_at_1000
|
916 |
-
value: 29.
|
917 |
- type: map_at_3
|
918 |
value: 24.595
|
919 |
- type: map_at_5
|
@@ -1186,6 +1258,75 @@ model-index:
|
|
1186 |
value: 43.470000000000006
|
1187 |
- type: f1
|
1188 |
value: 39.27142511079909
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1189 |
- task:
|
1190 |
type: Retrieval
|
1191 |
dataset:
|
@@ -1255,6 +1396,75 @@ model-index:
|
|
1255 |
value: 24.490000000000002
|
1256 |
- type: recall_at_5
|
1257 |
value: 28.621999999999996
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1258 |
- task:
|
1259 |
type: Classification
|
1260 |
dataset:
|
@@ -1270,6 +1480,75 @@ model-index:
|
|
1270 |
value: 61.82215741645874
|
1271 |
- type: f1
|
1272 |
value: 67.04790333380426
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1273 |
- task:
|
1274 |
type: Classification
|
1275 |
dataset:
|
@@ -1332,7 +1611,7 @@ model-index:
|
|
1332 |
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1333 |
metrics:
|
1334 |
- type: v_measure
|
1335 |
-
value: 36.
|
1336 |
- task:
|
1337 |
type: Clustering
|
1338 |
dataset:
|
@@ -1343,7 +1622,20 @@ model-index:
|
|
1343 |
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1344 |
metrics:
|
1345 |
- type: v_measure
|
1346 |
-
value: 32.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1347 |
- task:
|
1348 |
type: Retrieval
|
1349 |
dataset:
|
@@ -1366,17 +1658,17 @@ model-index:
|
|
1366 |
- type: map_at_5
|
1367 |
value: 6.654
|
1368 |
- type: mrr_at_1
|
1369 |
-
value:
|
1370 |
- type: mrr_at_10
|
1371 |
-
value: 43.
|
1372 |
- type: mrr_at_100
|
1373 |
-
value: 44.
|
1374 |
- type: mrr_at_1000
|
1375 |
-
value: 44.
|
1376 |
- type: mrr_at_3
|
1377 |
-
value: 41.
|
1378 |
- type: mrr_at_5
|
1379 |
-
value:
|
1380 |
- type: ndcg_at_1
|
1381 |
value: 31.889
|
1382 |
- type: ndcg_at_10
|
@@ -1494,63 +1786,63 @@ model-index:
|
|
1494 |
- type: map_at_1
|
1495 |
value: 67.534
|
1496 |
- type: map_at_10
|
1497 |
-
value: 81.
|
1498 |
- type: map_at_100
|
1499 |
-
value: 82.
|
1500 |
- type: map_at_1000
|
1501 |
-
value: 82.
|
1502 |
- type: map_at_3
|
1503 |
-
value: 78.
|
1504 |
- type: map_at_5
|
1505 |
-
value: 80.
|
1506 |
- type: mrr_at_1
|
1507 |
-
value: 77.
|
1508 |
- type: mrr_at_10
|
1509 |
-
value: 84.
|
1510 |
- type: mrr_at_100
|
1511 |
-
value: 84.
|
1512 |
- type: mrr_at_1000
|
1513 |
-
value: 84.
|
1514 |
- type: mrr_at_3
|
1515 |
-
value: 83.
|
1516 |
- type: mrr_at_5
|
1517 |
-
value: 84.
|
1518 |
- type: ndcg_at_1
|
1519 |
value: 77.79
|
1520 |
- type: ndcg_at_10
|
1521 |
-
value: 85.
|
1522 |
- type: ndcg_at_100
|
1523 |
-
value: 87.
|
1524 |
- type: ndcg_at_1000
|
1525 |
-
value: 87.
|
1526 |
- type: ndcg_at_3
|
1527 |
-
value: 82.
|
1528 |
- type: ndcg_at_5
|
1529 |
-
value: 84.
|
1530 |
- type: precision_at_1
|
1531 |
value: 77.79
|
1532 |
- type: precision_at_10
|
1533 |
-
value: 13.
|
1534 |
- type: precision_at_100
|
1535 |
value: 1.5190000000000001
|
1536 |
- type: precision_at_1000
|
1537 |
value: 0.156
|
1538 |
- type: precision_at_3
|
1539 |
-
value: 36.
|
1540 |
- type: precision_at_5
|
1541 |
-
value: 23.
|
1542 |
- type: recall_at_1
|
1543 |
value: 67.534
|
1544 |
- type: recall_at_10
|
1545 |
-
value: 93.
|
1546 |
- type: recall_at_100
|
1547 |
value: 99.10799999999999
|
1548 |
- type: recall_at_1000
|
1549 |
value: 99.911
|
1550 |
- type: recall_at_3
|
1551 |
-
value: 84.
|
1552 |
- type: recall_at_5
|
1553 |
-
value: 89.
|
1554 |
- task:
|
1555 |
type: Clustering
|
1556 |
dataset:
|
@@ -1561,7 +1853,7 @@ model-index:
|
|
1561 |
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1562 |
metrics:
|
1563 |
- type: v_measure
|
1564 |
-
value: 50.
|
1565 |
- task:
|
1566 |
type: Clustering
|
1567 |
dataset:
|
@@ -1572,7 +1864,7 @@ model-index:
|
|
1572 |
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1573 |
metrics:
|
1574 |
- type: v_measure
|
1575 |
-
value: 54.
|
1576 |
- task:
|
1577 |
type: Retrieval
|
1578 |
dataset:
|
@@ -1652,17 +1944,17 @@ model-index:
|
|
1652 |
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1653 |
metrics:
|
1654 |
- type: cos_sim_pearson
|
1655 |
-
value: 85.
|
1656 |
- type: cos_sim_spearman
|
1657 |
-
value: 80.
|
1658 |
- type: euclidean_pearson
|
1659 |
-
value: 83.
|
1660 |
- type: euclidean_spearman
|
1661 |
-
value: 80.
|
1662 |
- type: manhattan_pearson
|
1663 |
-
value: 83.
|
1664 |
- type: manhattan_spearman
|
1665 |
-
value: 80.
|
1666 |
- task:
|
1667 |
type: STS
|
1668 |
dataset:
|
@@ -1673,17 +1965,17 @@ model-index:
|
|
1673 |
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1674 |
metrics:
|
1675 |
- type: cos_sim_pearson
|
1676 |
-
value: 85.
|
1677 |
- type: cos_sim_spearman
|
1678 |
-
value: 76.
|
1679 |
- type: euclidean_pearson
|
1680 |
-
value: 81.
|
1681 |
- type: euclidean_spearman
|
1682 |
-
value: 75.
|
1683 |
- type: manhattan_pearson
|
1684 |
-
value: 81.
|
1685 |
- type: manhattan_spearman
|
1686 |
-
value: 74.
|
1687 |
- task:
|
1688 |
type: STS
|
1689 |
dataset:
|
@@ -1694,17 +1986,17 @@ model-index:
|
|
1694 |
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1695 |
metrics:
|
1696 |
- type: cos_sim_pearson
|
1697 |
-
value: 81.
|
1698 |
- type: cos_sim_spearman
|
1699 |
value: 82.62953855483207
|
1700 |
- type: euclidean_pearson
|
1701 |
-
value: 82.
|
1702 |
- type: euclidean_spearman
|
1703 |
-
value: 82.
|
1704 |
- type: manhattan_pearson
|
1705 |
-
value: 82.
|
1706 |
- type: manhattan_spearman
|
1707 |
-
value: 82.
|
1708 |
- task:
|
1709 |
type: STS
|
1710 |
dataset:
|
@@ -1715,17 +2007,17 @@ model-index:
|
|
1715 |
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
1716 |
metrics:
|
1717 |
- type: cos_sim_pearson
|
1718 |
-
value: 81.
|
1719 |
- type: cos_sim_spearman
|
1720 |
-
value: 77.
|
1721 |
- type: euclidean_pearson
|
1722 |
-
value: 81.
|
1723 |
- type: euclidean_spearman
|
1724 |
-
value: 78.
|
1725 |
- type: manhattan_pearson
|
1726 |
-
value: 81.
|
1727 |
- type: manhattan_spearman
|
1728 |
-
value: 77.
|
1729 |
- task:
|
1730 |
type: STS
|
1731 |
dataset:
|
@@ -1736,17 +2028,17 @@ model-index:
|
|
1736 |
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
1737 |
metrics:
|
1738 |
- type: cos_sim_pearson
|
1739 |
-
value: 84.
|
1740 |
- type: cos_sim_spearman
|
1741 |
-
value: 85.
|
1742 |
- type: euclidean_pearson
|
1743 |
-
value: 85.
|
1744 |
- type: euclidean_spearman
|
1745 |
-
value: 86.
|
1746 |
- type: manhattan_pearson
|
1747 |
-
value: 85.
|
1748 |
- type: manhattan_spearman
|
1749 |
-
value: 86.
|
1750 |
- task:
|
1751 |
type: STS
|
1752 |
dataset:
|
@@ -1757,17 +2049,17 @@ model-index:
|
|
1757 |
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
1758 |
metrics:
|
1759 |
- type: cos_sim_pearson
|
1760 |
-
value: 78.
|
1761 |
- type: cos_sim_spearman
|
1762 |
value: 80.68461073524229
|
1763 |
- type: euclidean_pearson
|
1764 |
-
value: 81.
|
1765 |
- type: euclidean_spearman
|
1766 |
-
value: 81.
|
1767 |
- type: manhattan_pearson
|
1768 |
-
value: 81.
|
1769 |
- type: manhattan_spearman
|
1770 |
-
value: 81.
|
1771 |
- task:
|
1772 |
type: STS
|
1773 |
dataset:
|
@@ -1778,15 +2070,15 @@ model-index:
|
|
1778 |
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
1779 |
metrics:
|
1780 |
- type: cos_sim_pearson
|
1781 |
-
value: 89.
|
1782 |
- type: cos_sim_spearman
|
1783 |
value: 88.99264497015508
|
1784 |
- type: euclidean_pearson
|
1785 |
-
value: 88.
|
1786 |
- type: euclidean_spearman
|
1787 |
value: 88.417049574577
|
1788 |
- type: manhattan_pearson
|
1789 |
-
value: 88.
|
1790 |
- type: manhattan_spearman
|
1791 |
value: 88.62174073802386
|
1792 |
- task:
|
@@ -1799,15 +2091,15 @@ model-index:
|
|
1799 |
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
1800 |
metrics:
|
1801 |
- type: cos_sim_pearson
|
1802 |
-
value: 65.
|
1803 |
- type: cos_sim_spearman
|
1804 |
value: 68.25861908141049
|
1805 |
- type: euclidean_pearson
|
1806 |
-
value: 67.
|
1807 |
- type: euclidean_spearman
|
1808 |
value: 67.74440638624723
|
1809 |
- type: manhattan_pearson
|
1810 |
-
value: 67.
|
1811 |
- type: manhattan_spearman
|
1812 |
value: 67.58993746063668
|
1813 |
- task:
|
@@ -1820,15 +2112,15 @@ model-index:
|
|
1820 |
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
1821 |
metrics:
|
1822 |
- type: cos_sim_pearson
|
1823 |
-
value: 84.
|
1824 |
- type: cos_sim_spearman
|
1825 |
value: 84.2021805427655
|
1826 |
- type: euclidean_pearson
|
1827 |
-
value: 85.
|
1828 |
- type: euclidean_spearman
|
1829 |
value: 84.7692260813728
|
1830 |
- type: manhattan_pearson
|
1831 |
-
value: 85.
|
1832 |
- type: manhattan_spearman
|
1833 |
value: 84.68261435873887
|
1834 |
- task:
|
@@ -1935,7 +2227,7 @@ model-index:
|
|
1935 |
- type: dot_accuracy
|
1936 |
value: 99.6009900990099
|
1937 |
- type: dot_ap
|
1938 |
-
value: 85.
|
1939 |
- type: dot_f1
|
1940 |
value: 79.68285431119922
|
1941 |
- type: dot_precision
|
@@ -1945,7 +2237,7 @@ model-index:
|
|
1945 |
- type: euclidean_accuracy
|
1946 |
value: 99.66435643564357
|
1947 |
- type: euclidean_ap
|
1948 |
-
value: 90.
|
1949 |
- type: euclidean_f1
|
1950 |
value: 82.47925817471938
|
1951 |
- type: euclidean_precision
|
@@ -1955,7 +2247,7 @@ model-index:
|
|
1955 |
- type: manhattan_accuracy
|
1956 |
value: 99.65247524752475
|
1957 |
- type: manhattan_ap
|
1958 |
-
value: 89.
|
1959 |
- type: manhattan_f1
|
1960 |
value: 81.63682864450128
|
1961 |
- type: manhattan_precision
|
@@ -1978,7 +2270,7 @@ model-index:
|
|
1978 |
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
1979 |
metrics:
|
1980 |
- type: v_measure
|
1981 |
-
value:
|
1982 |
- task:
|
1983 |
type: Clustering
|
1984 |
dataset:
|
@@ -1989,7 +2281,7 @@ model-index:
|
|
1989 |
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
1990 |
metrics:
|
1991 |
- type: v_measure
|
1992 |
-
value: 32.
|
1993 |
- task:
|
1994 |
type: Reranking
|
1995 |
dataset:
|
@@ -2000,26 +2292,9 @@ model-index:
|
|
2000 |
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2001 |
metrics:
|
2002 |
- type: map
|
2003 |
-
value: 47.
|
2004 |
- type: mrr
|
2005 |
-
value: 47.
|
2006 |
-
- task:
|
2007 |
-
type: Summarization
|
2008 |
-
dataset:
|
2009 |
-
type: mteb/summeval
|
2010 |
-
name: MTEB SummEval
|
2011 |
-
config: default
|
2012 |
-
split: test
|
2013 |
-
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2014 |
-
metrics:
|
2015 |
-
- type: cos_sim_pearson
|
2016 |
-
value: 30.794109958863856
|
2017 |
-
- type: cos_sim_spearman
|
2018 |
-
value: 32.38893238877061
|
2019 |
-
- type: dot_pearson
|
2020 |
-
value: 25.573206015466006
|
2021 |
-
- type: dot_spearman
|
2022 |
-
value: 26.69770548172811
|
2023 |
- task:
|
2024 |
type: Retrieval
|
2025 |
dataset:
|
@@ -2168,11 +2443,11 @@ model-index:
|
|
2168 |
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2169 |
metrics:
|
2170 |
- type: accuracy
|
2171 |
-
value: 67.
|
2172 |
- type: ap
|
2173 |
-
value: 12.
|
2174 |
- type: f1
|
2175 |
-
value: 51.
|
2176 |
- task:
|
2177 |
type: Classification
|
2178 |
dataset:
|
@@ -2196,7 +2471,7 @@ model-index:
|
|
2196 |
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2197 |
metrics:
|
2198 |
- type: v_measure
|
2199 |
-
value: 45.
|
2200 |
- task:
|
2201 |
type: PairClassification
|
2202 |
dataset:
|
@@ -2209,7 +2484,7 @@ model-index:
|
|
2209 |
- type: cos_sim_accuracy
|
2210 |
value: 84.16284198605233
|
2211 |
- type: cos_sim_ap
|
2212 |
-
value: 67.
|
2213 |
- type: cos_sim_f1
|
2214 |
value: 63.007767732076914
|
2215 |
- type: cos_sim_precision
|
@@ -2219,7 +2494,7 @@ model-index:
|
|
2219 |
- type: dot_accuracy
|
2220 |
value: 80.60439887941826
|
2221 |
- type: dot_ap
|
2222 |
-
value: 55.
|
2223 |
- type: dot_f1
|
2224 |
value: 55.023250784038055
|
2225 |
- type: dot_precision
|
@@ -2229,7 +2504,7 @@ model-index:
|
|
2229 |
- type: euclidean_accuracy
|
2230 |
value: 84.75889610776659
|
2231 |
- type: euclidean_ap
|
2232 |
-
value: 69.
|
2233 |
- type: euclidean_f1
|
2234 |
value: 64.72887151929653
|
2235 |
- type: euclidean_precision
|
@@ -2239,7 +2514,7 @@ model-index:
|
|
2239 |
- type: manhattan_accuracy
|
2240 |
value: 84.84234368480658
|
2241 |
- type: manhattan_ap
|
2242 |
-
value: 69.
|
2243 |
- type: manhattan_f1
|
2244 |
value: 64.78766430738119
|
2245 |
- type: manhattan_precision
|
@@ -2249,7 +2524,7 @@ model-index:
|
|
2249 |
- type: max_accuracy
|
2250 |
value: 84.84234368480658
|
2251 |
- type: max_ap
|
2252 |
-
value: 69.
|
2253 |
- type: max_f1
|
2254 |
value: 64.78766430738119
|
2255 |
- task:
|
@@ -2264,7 +2539,7 @@ model-index:
|
|
2264 |
- type: cos_sim_accuracy
|
2265 |
value: 88.46198626149726
|
2266 |
- type: cos_sim_ap
|
2267 |
-
value: 84.
|
2268 |
- type: cos_sim_f1
|
2269 |
value: 77.18601251827143
|
2270 |
- type: cos_sim_precision
|
@@ -2274,7 +2549,7 @@ model-index:
|
|
2274 |
- type: dot_accuracy
|
2275 |
value: 86.79512554818179
|
2276 |
- type: dot_ap
|
2277 |
-
value: 80.
|
2278 |
- type: dot_f1
|
2279 |
value: 74.18943791589976
|
2280 |
- type: dot_precision
|
@@ -2284,7 +2559,7 @@ model-index:
|
|
2284 |
- type: euclidean_accuracy
|
2285 |
value: 88.2368921488726
|
2286 |
- type: euclidean_ap
|
2287 |
-
value: 84.
|
2288 |
- type: euclidean_f1
|
2289 |
value: 76.62216238453198
|
2290 |
- type: euclidean_precision
|
@@ -2294,7 +2569,7 @@ model-index:
|
|
2294 |
- type: manhattan_accuracy
|
2295 |
value: 88.29122521054062
|
2296 |
- type: manhattan_ap
|
2297 |
-
value: 84.
|
2298 |
- type: manhattan_f1
|
2299 |
value: 76.60077590984667
|
2300 |
- type: manhattan_precision
|
@@ -2304,7 +2579,7 @@ model-index:
|
|
2304 |
- type: max_accuracy
|
2305 |
value: 88.46198626149726
|
2306 |
- type: max_ap
|
2307 |
-
value: 84.
|
2308 |
- type: max_f1
|
2309 |
value: 77.18601251827143
|
2310 |
---
|
|
|
1 |
---
|
2 |
tags:
|
3 |
+
- feature-extraction
|
4 |
+
- sentence-similarity
|
5 |
+
- transformers
|
6 |
- mteb
|
7 |
model-index:
|
8 |
- name: embedder-100p
|
|
|
32 |
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
33 |
metrics:
|
34 |
- type: accuracy
|
35 |
+
value: 70.40857500000001
|
36 |
- type: ap
|
37 |
+
value: 64.61611594622543
|
38 |
- type: f1
|
39 |
+
value: 70.28136292034776
|
40 |
- task:
|
41 |
type: Classification
|
42 |
dataset:
|
|
|
72 |
- type: map_at_5
|
73 |
value: 40.398
|
74 |
- type: mrr_at_1
|
75 |
+
value: 28.165000000000003
|
76 |
- type: mrr_at_10
|
77 |
+
value: 43.05
|
78 |
- type: mrr_at_100
|
79 |
+
value: 43.994
|
80 |
- type: mrr_at_1000
|
81 |
+
value: 44.0
|
82 |
- type: mrr_at_3
|
83 |
+
value: 37.376
|
84 |
- type: mrr_at_5
|
85 |
+
value: 40.665
|
86 |
- type: ndcg_at_1
|
87 |
value: 27.311999999999998
|
88 |
- type: ndcg_at_10
|
|
|
129 |
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
130 |
metrics:
|
131 |
- type: v_measure
|
132 |
+
value: 42.899186071418946
|
133 |
- task:
|
134 |
type: Clustering
|
135 |
dataset:
|
|
|
140 |
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
141 |
metrics:
|
142 |
- type: v_measure
|
143 |
+
value: 32.44851270109027
|
144 |
- task:
|
145 |
type: Reranking
|
146 |
dataset:
|
|
|
164 |
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
165 |
metrics:
|
166 |
- type: cos_sim_pearson
|
167 |
+
value: 80.06755261269532
|
168 |
- type: cos_sim_spearman
|
169 |
value: 75.31798123153732
|
170 |
- type: euclidean_pearson
|
171 |
+
value: 77.70454789166935
|
172 |
- type: euclidean_spearman
|
173 |
value: 74.07578425253767
|
174 |
- type: manhattan_pearson
|
175 |
+
value: 77.18021593857006
|
176 |
- type: manhattan_spearman
|
177 |
value: 74.10590542079663
|
178 |
- task:
|
|
|
198 |
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
199 |
metrics:
|
200 |
- type: v_measure
|
201 |
+
value: 37.236246179832975
|
202 |
- task:
|
203 |
type: Clustering
|
204 |
dataset:
|
|
|
209 |
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
210 |
metrics:
|
211 |
- type: v_measure
|
212 |
+
value: 29.75182197424716
|
213 |
- task:
|
214 |
type: Retrieval
|
215 |
dataset:
|
|
|
307 |
- type: mrr_at_100
|
308 |
value: 38.942
|
309 |
- type: mrr_at_1000
|
310 |
+
value: 38.993
|
311 |
- type: mrr_at_3
|
312 |
value: 35.435
|
313 |
- type: mrr_at_5
|
|
|
319 |
- type: ndcg_at_100
|
320 |
value: 43.562
|
321 |
- type: ndcg_at_1000
|
322 |
+
value: 46.036
|
323 |
- type: ndcg_at_3
|
324 |
value: 33.93
|
325 |
- type: ndcg_at_5
|
|
|
693 |
value: 34.489
|
694 |
- type: recall_at_5
|
695 |
value: 40.182
|
696 |
+
- task:
|
697 |
+
type: Retrieval
|
698 |
+
dataset:
|
699 |
+
type: BeIR/cqadupstack
|
700 |
+
name: MTEB CQADupstackRetrieval
|
701 |
+
config: default
|
702 |
+
split: test
|
703 |
+
revision: None
|
704 |
+
metrics:
|
705 |
+
- type: map_at_1
|
706 |
+
value: 21.159999999999997
|
707 |
+
- type: map_at_10
|
708 |
+
value: 29.421333333333337
|
709 |
+
- type: map_at_100
|
710 |
+
value: 30.61058333333333
|
711 |
+
- type: map_at_1000
|
712 |
+
value: 30.742416666666667
|
713 |
+
- type: map_at_3
|
714 |
+
value: 26.745833333333337
|
715 |
+
- type: map_at_5
|
716 |
+
value: 28.20291666666667
|
717 |
+
- type: mrr_at_1
|
718 |
+
value: 25.308249999999997
|
719 |
+
- type: mrr_at_10
|
720 |
+
value: 33.21275
|
721 |
+
- type: mrr_at_100
|
722 |
+
value: 34.09341666666666
|
723 |
+
- type: mrr_at_1000
|
724 |
+
value: 34.163000000000004
|
725 |
+
- type: mrr_at_3
|
726 |
+
value: 30.81675
|
727 |
+
- type: mrr_at_5
|
728 |
+
value: 32.16816666666667
|
729 |
+
- type: ndcg_at_1
|
730 |
+
value: 25.308249999999997
|
731 |
+
- type: ndcg_at_10
|
732 |
+
value: 34.46208333333333
|
733 |
+
- type: ndcg_at_100
|
734 |
+
value: 39.77183333333334
|
735 |
+
- type: ndcg_at_1000
|
736 |
+
value: 42.461916666666674
|
737 |
+
- type: ndcg_at_3
|
738 |
+
value: 29.797916666666662
|
739 |
+
- type: ndcg_at_5
|
740 |
+
value: 31.935166666666664
|
741 |
+
- type: precision_at_1
|
742 |
+
value: 25.308249999999997
|
743 |
+
- type: precision_at_10
|
744 |
+
value: 6.260916666666666
|
745 |
+
- type: precision_at_100
|
746 |
+
value: 1.0716666666666665
|
747 |
+
- type: precision_at_1000
|
748 |
+
value: 0.15025000000000002
|
749 |
+
- type: precision_at_3
|
750 |
+
value: 13.926916666666667
|
751 |
+
- type: precision_at_5
|
752 |
+
value: 10.043916666666664
|
753 |
+
- type: recall_at_1
|
754 |
+
value: 21.159999999999997
|
755 |
+
- type: recall_at_10
|
756 |
+
value: 45.61408333333334
|
757 |
+
- type: recall_at_100
|
758 |
+
value: 69.26583333333332
|
759 |
+
- type: recall_at_1000
|
760 |
+
value: 88.22541666666667
|
761 |
+
- type: recall_at_3
|
762 |
+
value: 32.67691666666666
|
763 |
+
- type: recall_at_5
|
764 |
+
value: 38.12716666666667
|
765 |
- task:
|
766 |
type: Retrieval
|
767 |
dataset:
|
|
|
985 |
- type: map_at_100
|
986 |
value: 28.875
|
987 |
- type: map_at_1000
|
988 |
+
value: 29.152
|
989 |
- type: map_at_3
|
990 |
value: 24.595
|
991 |
- type: map_at_5
|
|
|
1258 |
value: 43.470000000000006
|
1259 |
- type: f1
|
1260 |
value: 39.27142511079909
|
1261 |
+
- task:
|
1262 |
+
type: Retrieval
|
1263 |
+
dataset:
|
1264 |
+
type: fever
|
1265 |
+
name: MTEB FEVER
|
1266 |
+
config: default
|
1267 |
+
split: test
|
1268 |
+
revision: None
|
1269 |
+
metrics:
|
1270 |
+
- type: map_at_1
|
1271 |
+
value: 37.468
|
1272 |
+
- type: map_at_10
|
1273 |
+
value: 49.652
|
1274 |
+
- type: map_at_100
|
1275 |
+
value: 50.314
|
1276 |
+
- type: map_at_1000
|
1277 |
+
value: 50.346999999999994
|
1278 |
+
- type: map_at_3
|
1279 |
+
value: 46.592
|
1280 |
+
- type: map_at_5
|
1281 |
+
value: 48.553000000000004
|
1282 |
+
- type: mrr_at_1
|
1283 |
+
value: 40.384
|
1284 |
+
- type: mrr_at_10
|
1285 |
+
value: 53.03099999999999
|
1286 |
+
- type: mrr_at_100
|
1287 |
+
value: 53.629000000000005
|
1288 |
+
- type: mrr_at_1000
|
1289 |
+
value: 53.65299999999999
|
1290 |
+
- type: mrr_at_3
|
1291 |
+
value: 49.967
|
1292 |
+
- type: mrr_at_5
|
1293 |
+
value: 51.951
|
1294 |
+
- type: ndcg_at_1
|
1295 |
+
value: 40.384
|
1296 |
+
- type: ndcg_at_10
|
1297 |
+
value: 56.318
|
1298 |
+
- type: ndcg_at_100
|
1299 |
+
value: 59.43000000000001
|
1300 |
+
- type: ndcg_at_1000
|
1301 |
+
value: 60.266
|
1302 |
+
- type: ndcg_at_3
|
1303 |
+
value: 50.341
|
1304 |
+
- type: ndcg_at_5
|
1305 |
+
value: 53.756
|
1306 |
+
- type: precision_at_1
|
1307 |
+
value: 40.384
|
1308 |
+
- type: precision_at_10
|
1309 |
+
value: 8.062999999999999
|
1310 |
+
- type: precision_at_100
|
1311 |
+
value: 0.972
|
1312 |
+
- type: precision_at_1000
|
1313 |
+
value: 0.106
|
1314 |
+
- type: precision_at_3
|
1315 |
+
value: 20.897
|
1316 |
+
- type: precision_at_5
|
1317 |
+
value: 14.374
|
1318 |
+
- type: recall_at_1
|
1319 |
+
value: 37.468
|
1320 |
+
- type: recall_at_10
|
1321 |
+
value: 73.68900000000001
|
1322 |
+
- type: recall_at_100
|
1323 |
+
value: 87.844
|
1324 |
+
- type: recall_at_1000
|
1325 |
+
value: 94.098
|
1326 |
+
- type: recall_at_3
|
1327 |
+
value: 57.768
|
1328 |
+
- type: recall_at_5
|
1329 |
+
value: 65.979
|
1330 |
- task:
|
1331 |
type: Retrieval
|
1332 |
dataset:
|
|
|
1396 |
value: 24.490000000000002
|
1397 |
- type: recall_at_5
|
1398 |
value: 28.621999999999996
|
1399 |
+
- task:
|
1400 |
+
type: Retrieval
|
1401 |
+
dataset:
|
1402 |
+
type: hotpotqa
|
1403 |
+
name: MTEB HotpotQA
|
1404 |
+
config: default
|
1405 |
+
split: test
|
1406 |
+
revision: None
|
1407 |
+
metrics:
|
1408 |
+
- type: map_at_1
|
1409 |
+
value: 24.659
|
1410 |
+
- type: map_at_10
|
1411 |
+
value: 33.622
|
1412 |
+
- type: map_at_100
|
1413 |
+
value: 34.488
|
1414 |
+
- type: map_at_1000
|
1415 |
+
value: 34.58
|
1416 |
+
- type: map_at_3
|
1417 |
+
value: 31.317
|
1418 |
+
- type: map_at_5
|
1419 |
+
value: 32.689
|
1420 |
+
- type: mrr_at_1
|
1421 |
+
value: 49.318
|
1422 |
+
- type: mrr_at_10
|
1423 |
+
value: 57.028999999999996
|
1424 |
+
- type: mrr_at_100
|
1425 |
+
value: 57.567
|
1426 |
+
- type: mrr_at_1000
|
1427 |
+
value: 57.603
|
1428 |
+
- type: mrr_at_3
|
1429 |
+
value: 55.152
|
1430 |
+
- type: mrr_at_5
|
1431 |
+
value: 56.289
|
1432 |
+
- type: ndcg_at_1
|
1433 |
+
value: 49.318
|
1434 |
+
- type: ndcg_at_10
|
1435 |
+
value: 42.091
|
1436 |
+
- type: ndcg_at_100
|
1437 |
+
value: 45.812999999999995
|
1438 |
+
- type: ndcg_at_1000
|
1439 |
+
value: 47.902
|
1440 |
+
- type: ndcg_at_3
|
1441 |
+
value: 38.012
|
1442 |
+
- type: ndcg_at_5
|
1443 |
+
value: 40.160000000000004
|
1444 |
+
- type: precision_at_1
|
1445 |
+
value: 49.318
|
1446 |
+
- type: precision_at_10
|
1447 |
+
value: 8.921
|
1448 |
+
- type: precision_at_100
|
1449 |
+
value: 1.189
|
1450 |
+
- type: precision_at_1000
|
1451 |
+
value: 0.147
|
1452 |
+
- type: precision_at_3
|
1453 |
+
value: 23.655
|
1454 |
+
- type: precision_at_5
|
1455 |
+
value: 15.897
|
1456 |
+
- type: recall_at_1
|
1457 |
+
value: 24.659
|
1458 |
+
- type: recall_at_10
|
1459 |
+
value: 44.605
|
1460 |
+
- type: recall_at_100
|
1461 |
+
value: 59.453
|
1462 |
+
- type: recall_at_1000
|
1463 |
+
value: 73.40299999999999
|
1464 |
+
- type: recall_at_3
|
1465 |
+
value: 35.483
|
1466 |
+
- type: recall_at_5
|
1467 |
+
value: 39.743
|
1468 |
- task:
|
1469 |
type: Classification
|
1470 |
dataset:
|
|
|
1480 |
value: 61.82215741645874
|
1481 |
- type: f1
|
1482 |
value: 67.04790333380426
|
1483 |
+
- task:
|
1484 |
+
type: Retrieval
|
1485 |
+
dataset:
|
1486 |
+
type: msmarco
|
1487 |
+
name: MTEB MSMARCO
|
1488 |
+
config: default
|
1489 |
+
split: dev
|
1490 |
+
revision: None
|
1491 |
+
metrics:
|
1492 |
+
- type: map_at_1
|
1493 |
+
value: 13.635
|
1494 |
+
- type: map_at_10
|
1495 |
+
value: 22.412000000000003
|
1496 |
+
- type: map_at_100
|
1497 |
+
value: 23.622
|
1498 |
+
- type: map_at_1000
|
1499 |
+
value: 23.707
|
1500 |
+
- type: map_at_3
|
1501 |
+
value: 19.368
|
1502 |
+
- type: map_at_5
|
1503 |
+
value: 21.095
|
1504 |
+
- type: mrr_at_1
|
1505 |
+
value: 14.04
|
1506 |
+
- type: mrr_at_10
|
1507 |
+
value: 22.858
|
1508 |
+
- type: mrr_at_100
|
1509 |
+
value: 24.049
|
1510 |
+
- type: mrr_at_1000
|
1511 |
+
value: 24.127000000000002
|
1512 |
+
- type: mrr_at_3
|
1513 |
+
value: 19.852
|
1514 |
+
- type: mrr_at_5
|
1515 |
+
value: 21.552
|
1516 |
+
- type: ndcg_at_1
|
1517 |
+
value: 14.04
|
1518 |
+
- type: ndcg_at_10
|
1519 |
+
value: 27.676000000000002
|
1520 |
+
- type: ndcg_at_100
|
1521 |
+
value: 33.917
|
1522 |
+
- type: ndcg_at_1000
|
1523 |
+
value: 36.217
|
1524 |
+
- type: ndcg_at_3
|
1525 |
+
value: 21.432000000000002
|
1526 |
+
- type: ndcg_at_5
|
1527 |
+
value: 24.519
|
1528 |
+
- type: precision_at_1
|
1529 |
+
value: 14.04
|
1530 |
+
- type: precision_at_10
|
1531 |
+
value: 4.585999999999999
|
1532 |
+
- type: precision_at_100
|
1533 |
+
value: 0.776
|
1534 |
+
- type: precision_at_1000
|
1535 |
+
value: 0.097
|
1536 |
+
- type: precision_at_3
|
1537 |
+
value: 9.298
|
1538 |
+
- type: precision_at_5
|
1539 |
+
value: 7.135
|
1540 |
+
- type: recall_at_1
|
1541 |
+
value: 13.635
|
1542 |
+
- type: recall_at_10
|
1543 |
+
value: 44.015
|
1544 |
+
- type: recall_at_100
|
1545 |
+
value: 73.756
|
1546 |
+
- type: recall_at_1000
|
1547 |
+
value: 91.743
|
1548 |
+
- type: recall_at_3
|
1549 |
+
value: 26.941
|
1550 |
+
- type: recall_at_5
|
1551 |
+
value: 34.378
|
1552 |
- task:
|
1553 |
type: Classification
|
1554 |
dataset:
|
|
|
1611 |
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1612 |
metrics:
|
1613 |
- type: v_measure
|
1614 |
+
value: 36.646200212660744
|
1615 |
- task:
|
1616 |
type: Clustering
|
1617 |
dataset:
|
|
|
1622 |
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1623 |
metrics:
|
1624 |
- type: v_measure
|
1625 |
+
value: 32.57381797665868
|
1626 |
+
- task:
|
1627 |
+
type: Reranking
|
1628 |
+
dataset:
|
1629 |
+
type: mteb/mind_small
|
1630 |
+
name: MTEB MindSmallReranking
|
1631 |
+
config: default
|
1632 |
+
split: test
|
1633 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1634 |
+
metrics:
|
1635 |
+
- type: map
|
1636 |
+
value: 30.54815546178676
|
1637 |
+
- type: mrr
|
1638 |
+
value: 31.40311212966208
|
1639 |
- task:
|
1640 |
type: Retrieval
|
1641 |
dataset:
|
|
|
1658 |
- type: map_at_5
|
1659 |
value: 6.654
|
1660 |
- type: mrr_at_1
|
1661 |
+
value: 33.745999999999995
|
1662 |
- type: mrr_at_10
|
1663 |
+
value: 43.513000000000005
|
1664 |
- type: mrr_at_100
|
1665 |
+
value: 44.330999999999996
|
1666 |
- type: mrr_at_1000
|
1667 |
+
value: 44.388
|
1668 |
- type: mrr_at_3
|
1669 |
+
value: 41.28
|
1670 |
- type: mrr_at_5
|
1671 |
+
value: 42.766
|
1672 |
- type: ndcg_at_1
|
1673 |
value: 31.889
|
1674 |
- type: ndcg_at_10
|
|
|
1786 |
- type: map_at_1
|
1787 |
value: 67.534
|
1788 |
- type: map_at_10
|
1789 |
+
value: 81.449
|
1790 |
- type: map_at_100
|
1791 |
+
value: 82.15400000000001
|
1792 |
- type: map_at_1000
|
1793 |
+
value: 82.173
|
1794 |
- type: map_at_3
|
1795 |
+
value: 78.412
|
1796 |
- type: map_at_5
|
1797 |
+
value: 80.268
|
1798 |
- type: mrr_at_1
|
1799 |
+
value: 77.77
|
1800 |
- type: mrr_at_10
|
1801 |
+
value: 84.60499999999999
|
1802 |
- type: mrr_at_100
|
1803 |
+
value: 84.765
|
1804 |
- type: mrr_at_1000
|
1805 |
+
value: 84.76700000000001
|
1806 |
- type: mrr_at_3
|
1807 |
+
value: 83.493
|
1808 |
- type: mrr_at_5
|
1809 |
+
value: 84.221
|
1810 |
- type: ndcg_at_1
|
1811 |
value: 77.79
|
1812 |
- type: ndcg_at_10
|
1813 |
+
value: 85.555
|
1814 |
- type: ndcg_at_100
|
1815 |
+
value: 87.105
|
1816 |
- type: ndcg_at_1000
|
1817 |
+
value: 87.261
|
1818 |
- type: ndcg_at_3
|
1819 |
+
value: 82.401
|
1820 |
- type: ndcg_at_5
|
1821 |
+
value: 84.071
|
1822 |
- type: precision_at_1
|
1823 |
value: 77.79
|
1824 |
- type: precision_at_10
|
1825 |
+
value: 13.104
|
1826 |
- type: precision_at_100
|
1827 |
value: 1.5190000000000001
|
1828 |
- type: precision_at_1000
|
1829 |
value: 0.156
|
1830 |
- type: precision_at_3
|
1831 |
+
value: 36.157000000000004
|
1832 |
- type: precision_at_5
|
1833 |
+
value: 23.86
|
1834 |
- type: recall_at_1
|
1835 |
value: 67.534
|
1836 |
- type: recall_at_10
|
1837 |
+
value: 93.573
|
1838 |
- type: recall_at_100
|
1839 |
value: 99.10799999999999
|
1840 |
- type: recall_at_1000
|
1841 |
value: 99.911
|
1842 |
- type: recall_at_3
|
1843 |
+
value: 84.575
|
1844 |
- type: recall_at_5
|
1845 |
+
value: 89.251
|
1846 |
- task:
|
1847 |
type: Clustering
|
1848 |
dataset:
|
|
|
1853 |
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1854 |
metrics:
|
1855 |
- type: v_measure
|
1856 |
+
value: 50.622402916164575
|
1857 |
- task:
|
1858 |
type: Clustering
|
1859 |
dataset:
|
|
|
1864 |
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1865 |
metrics:
|
1866 |
- type: v_measure
|
1867 |
+
value: 54.43689895218044
|
1868 |
- task:
|
1869 |
type: Retrieval
|
1870 |
dataset:
|
|
|
1944 |
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1945 |
metrics:
|
1946 |
- type: cos_sim_pearson
|
1947 |
+
value: 85.92797679109452
|
1948 |
- type: cos_sim_spearman
|
1949 |
+
value: 80.91205372065706
|
1950 |
- type: euclidean_pearson
|
1951 |
+
value: 83.1339233055303
|
1952 |
- type: euclidean_spearman
|
1953 |
+
value: 80.80406858672507
|
1954 |
- type: manhattan_pearson
|
1955 |
+
value: 83.023350668501
|
1956 |
- type: manhattan_spearman
|
1957 |
+
value: 80.79924041758802
|
1958 |
- task:
|
1959 |
type: STS
|
1960 |
dataset:
|
|
|
1965 |
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1966 |
metrics:
|
1967 |
- type: cos_sim_pearson
|
1968 |
+
value: 85.40179876416202
|
1969 |
- type: cos_sim_spearman
|
1970 |
+
value: 76.97735281189986
|
1971 |
- type: euclidean_pearson
|
1972 |
+
value: 81.78242131839902
|
1973 |
- type: euclidean_spearman
|
1974 |
+
value: 75.2853626575815
|
1975 |
- type: manhattan_pearson
|
1976 |
+
value: 81.38214640501
|
1977 |
- type: manhattan_spearman
|
1978 |
+
value: 74.96725680962342
|
1979 |
- task:
|
1980 |
type: STS
|
1981 |
dataset:
|
|
|
1986 |
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1987 |
metrics:
|
1988 |
- type: cos_sim_pearson
|
1989 |
+
value: 81.38943723638555
|
1990 |
- type: cos_sim_spearman
|
1991 |
value: 82.62953855483207
|
1992 |
- type: euclidean_pearson
|
1993 |
+
value: 82.4417464172415
|
1994 |
- type: euclidean_spearman
|
1995 |
+
value: 82.8241086805702
|
1996 |
- type: manhattan_pearson
|
1997 |
+
value: 82.05925934320744
|
1998 |
- type: manhattan_spearman
|
1999 |
+
value: 82.44019953304266
|
2000 |
- task:
|
2001 |
type: STS
|
2002 |
dataset:
|
|
|
2007 |
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2008 |
metrics:
|
2009 |
- type: cos_sim_pearson
|
2010 |
+
value: 81.56920959786761
|
2011 |
- type: cos_sim_spearman
|
2012 |
+
value: 77.83933203825715
|
2013 |
- type: euclidean_pearson
|
2014 |
+
value: 81.34174603327101
|
2015 |
- type: euclidean_spearman
|
2016 |
+
value: 78.05064087128034
|
2017 |
- type: manhattan_pearson
|
2018 |
+
value: 81.1754246859513
|
2019 |
- type: manhattan_spearman
|
2020 |
+
value: 77.8965324094323
|
2021 |
- task:
|
2022 |
type: STS
|
2023 |
dataset:
|
|
|
2028 |
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2029 |
metrics:
|
2030 |
- type: cos_sim_pearson
|
2031 |
+
value: 84.70673290528633
|
2032 |
- type: cos_sim_spearman
|
2033 |
+
value: 85.918072169933
|
2034 |
- type: euclidean_pearson
|
2035 |
+
value: 85.49668339564212
|
2036 |
- type: euclidean_spearman
|
2037 |
+
value: 86.07562791847965
|
2038 |
- type: manhattan_pearson
|
2039 |
+
value: 85.46112200749786
|
2040 |
- type: manhattan_spearman
|
2041 |
+
value: 86.06360174588102
|
2042 |
- task:
|
2043 |
type: STS
|
2044 |
dataset:
|
|
|
2049 |
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2050 |
metrics:
|
2051 |
- type: cos_sim_pearson
|
2052 |
+
value: 78.57362584144626
|
2053 |
- type: cos_sim_spearman
|
2054 |
value: 80.68461073524229
|
2055 |
- type: euclidean_pearson
|
2056 |
+
value: 81.86974700030184
|
2057 |
- type: euclidean_spearman
|
2058 |
+
value: 81.9556672243023
|
2059 |
- type: manhattan_pearson
|
2060 |
+
value: 81.58501319903948
|
2061 |
- type: manhattan_spearman
|
2062 |
+
value: 81.65934304491222
|
2063 |
- task:
|
2064 |
type: STS
|
2065 |
dataset:
|
|
|
2070 |
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2071 |
metrics:
|
2072 |
- type: cos_sim_pearson
|
2073 |
+
value: 89.0517739143147
|
2074 |
- type: cos_sim_spearman
|
2075 |
value: 88.99264497015508
|
2076 |
- type: euclidean_pearson
|
2077 |
+
value: 88.60143851830212
|
2078 |
- type: euclidean_spearman
|
2079 |
value: 88.417049574577
|
2080 |
- type: manhattan_pearson
|
2081 |
+
value: 88.71275731832226
|
2082 |
- type: manhattan_spearman
|
2083 |
value: 88.62174073802386
|
2084 |
- task:
|
|
|
2091 |
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2092 |
metrics:
|
2093 |
- type: cos_sim_pearson
|
2094 |
+
value: 65.92377536840165
|
2095 |
- type: cos_sim_spearman
|
2096 |
value: 68.25861908141049
|
2097 |
- type: euclidean_pearson
|
2098 |
+
value: 67.74046365058068
|
2099 |
- type: euclidean_spearman
|
2100 |
value: 67.74440638624723
|
2101 |
- type: manhattan_pearson
|
2102 |
+
value: 67.72314553247108
|
2103 |
- type: manhattan_spearman
|
2104 |
value: 67.58993746063668
|
2105 |
- task:
|
|
|
2112 |
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2113 |
metrics:
|
2114 |
- type: cos_sim_pearson
|
2115 |
+
value: 84.01280212650944
|
2116 |
- type: cos_sim_spearman
|
2117 |
value: 84.2021805427655
|
2118 |
- type: euclidean_pearson
|
2119 |
+
value: 85.2593711183253
|
2120 |
- type: euclidean_spearman
|
2121 |
value: 84.7692260813728
|
2122 |
- type: manhattan_pearson
|
2123 |
+
value: 85.20370142077513
|
2124 |
- type: manhattan_spearman
|
2125 |
value: 84.68261435873887
|
2126 |
- task:
|
|
|
2227 |
- type: dot_accuracy
|
2228 |
value: 99.6009900990099
|
2229 |
- type: dot_ap
|
2230 |
+
value: 85.37859415933599
|
2231 |
- type: dot_f1
|
2232 |
value: 79.68285431119922
|
2233 |
- type: dot_precision
|
|
|
2237 |
- type: euclidean_accuracy
|
2238 |
value: 99.66435643564357
|
2239 |
- type: euclidean_ap
|
2240 |
+
value: 90.28983244955695
|
2241 |
- type: euclidean_f1
|
2242 |
value: 82.47925817471938
|
2243 |
- type: euclidean_precision
|
|
|
2247 |
- type: manhattan_accuracy
|
2248 |
value: 99.65247524752475
|
2249 |
- type: manhattan_ap
|
2250 |
+
value: 89.75455076116366
|
2251 |
- type: manhattan_f1
|
2252 |
value: 81.63682864450128
|
2253 |
- type: manhattan_precision
|
|
|
2270 |
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2271 |
metrics:
|
2272 |
- type: v_measure
|
2273 |
+
value: 54.25773656414605
|
2274 |
- task:
|
2275 |
type: Clustering
|
2276 |
dataset:
|
|
|
2281 |
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2282 |
metrics:
|
2283 |
- type: v_measure
|
2284 |
+
value: 32.52034918177213
|
2285 |
- task:
|
2286 |
type: Reranking
|
2287 |
dataset:
|
|
|
2292 |
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2293 |
metrics:
|
2294 |
- type: map
|
2295 |
+
value: 47.10460797458404
|
2296 |
- type: mrr
|
2297 |
+
value: 47.67126358119005
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2298 |
- task:
|
2299 |
type: Retrieval
|
2300 |
dataset:
|
|
|
2443 |
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2444 |
metrics:
|
2445 |
- type: accuracy
|
2446 |
+
value: 67.481
|
2447 |
- type: ap
|
2448 |
+
value: 12.474830532963725
|
2449 |
- type: f1
|
2450 |
+
value: 51.720124230716834
|
2451 |
- task:
|
2452 |
type: Classification
|
2453 |
dataset:
|
|
|
2471 |
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2472 |
metrics:
|
2473 |
- type: v_measure
|
2474 |
+
value: 45.695133575997474
|
2475 |
- task:
|
2476 |
type: PairClassification
|
2477 |
dataset:
|
|
|
2484 |
- type: cos_sim_accuracy
|
2485 |
value: 84.16284198605233
|
2486 |
- type: cos_sim_ap
|
2487 |
+
value: 67.77133994574282
|
2488 |
- type: cos_sim_f1
|
2489 |
value: 63.007767732076914
|
2490 |
- type: cos_sim_precision
|
|
|
2494 |
- type: dot_accuracy
|
2495 |
value: 80.60439887941826
|
2496 |
- type: dot_ap
|
2497 |
+
value: 55.17278808505333
|
2498 |
- type: dot_f1
|
2499 |
value: 55.023250784038055
|
2500 |
- type: dot_precision
|
|
|
2504 |
- type: euclidean_accuracy
|
2505 |
value: 84.75889610776659
|
2506 |
- type: euclidean_ap
|
2507 |
+
value: 69.33925609880741
|
2508 |
- type: euclidean_f1
|
2509 |
value: 64.72887151929653
|
2510 |
- type: euclidean_precision
|
|
|
2514 |
- type: manhattan_accuracy
|
2515 |
value: 84.84234368480658
|
2516 |
- type: manhattan_ap
|
2517 |
+
value: 69.50780726475959
|
2518 |
- type: manhattan_f1
|
2519 |
value: 64.78766430738119
|
2520 |
- type: manhattan_precision
|
|
|
2524 |
- type: max_accuracy
|
2525 |
value: 84.84234368480658
|
2526 |
- type: max_ap
|
2527 |
+
value: 69.50780726475959
|
2528 |
- type: max_f1
|
2529 |
value: 64.78766430738119
|
2530 |
- task:
|
|
|
2539 |
- type: cos_sim_accuracy
|
2540 |
value: 88.46198626149726
|
2541 |
- type: cos_sim_ap
|
2542 |
+
value: 84.64911720373662
|
2543 |
- type: cos_sim_f1
|
2544 |
value: 77.18601251827143
|
2545 |
- type: cos_sim_precision
|
|
|
2549 |
- type: dot_accuracy
|
2550 |
value: 86.79512554818179
|
2551 |
- type: dot_ap
|
2552 |
+
value: 80.43213280609042
|
2553 |
- type: dot_f1
|
2554 |
value: 74.18943791589976
|
2555 |
- type: dot_precision
|
|
|
2559 |
- type: euclidean_accuracy
|
2560 |
value: 88.2368921488726
|
2561 |
- type: euclidean_ap
|
2562 |
+
value: 84.2791000321804
|
2563 |
- type: euclidean_f1
|
2564 |
value: 76.62216238453198
|
2565 |
- type: euclidean_precision
|
|
|
2569 |
- type: manhattan_accuracy
|
2570 |
value: 88.29122521054062
|
2571 |
- type: manhattan_ap
|
2572 |
+
value: 84.25495067571485
|
2573 |
- type: manhattan_f1
|
2574 |
value: 76.60077590984667
|
2575 |
- type: manhattan_precision
|
|
|
2579 |
- type: max_accuracy
|
2580 |
value: 88.46198626149726
|
2581 |
- type: max_ap
|
2582 |
+
value: 84.64911720373662
|
2583 |
- type: max_f1
|
2584 |
value: 77.18601251827143
|
2585 |
---
|