--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** deepkawamura - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) # 推論用コード # 必要なライブラリーをインストール ``` get_ipython().run_line_magic('%capture', '') get_ipython().system('pip install unsloth') get_ipython().system('pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"') get_ipython().system('pip install -U torch') get_ipython().system('pip install -U peft') ``` # 必要なライブラリーを読み込み ``` from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re ``` # ベースとなるモデルと学習した LoRA のアダプター ``` model_id = "llm-jp/llm-jp-3-13b" adapter_id = "deepkawamura/llm-jp-3-13b-ft04" ``` # Hugging Face Token を指定。 ``` HF_TOKEN = "" ``` # unsloth の FastLanguageModel で元のモデルをロード ``` dtype = None load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_id, dtype = dtype, load_in_4bit = load_in_4bit, trust_remote_code = True, ) ``` # 元のモデルにLoRAのアダプタを統合。 ``` model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) ``` # タスクとなるデータを読み込む ``` datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" ``` # モデルを用いてタスクを推論 ``` FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) json_file_id = re.sub(".*/", "", adapter_id) with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ```