|
import gradio as gr |
|
from datasets import load_dataset |
|
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification |
|
|
|
def train_model(): |
|
|
|
dataset = load_dataset("imdb") |
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
evaluation_strategy="epoch", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=64, |
|
num_train_epochs=3, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset['train'], |
|
eval_dataset=dataset['test'], |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
return "Model has been trained!" |
|
|
|
|
|
demo = gr.Interface(fn=train_model, inputs=[], outputs="text", live=True) |
|
|
|
|
|
demo.launch() |
|
|