File size: 2,823 Bytes
f1c900c
 
 
645e207
f1c900c
645e207
 
 
 
 
 
 
 
dafda4a
645e207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: other
license_name: deepseek
license_link: https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL
---


<p align="center">
<img width="500px" alt="DeepSeek Chat" src="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/logo.png?raw=true">
</p>
<p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a>  |  <a href="https://chat.deepseek.com/">[🤖 Chat with DeepSeek LLM]</a>  |  <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a>  |  <a href="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/qr.jpeg">[Wechat(微信)]</a> </p>

<p align="center">
  <a href="https://arxiv.org/pdf/2402.03300.pdf"><b>Paper Link</b>👁️</a>
</p>

<hr>





### 1. Introduction to DeepSeekMath
See the [Introduction](https://github.com/deepseek-ai/DeepSeek-Math) for more details.

### 2. How to Use
Here give some examples of how to use our model.

**Chat Completion**


```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/deepseek-math-7b-rl"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

messages = [
    {"role": "user", "content": "what is the integral of x^2 from 0 to 2?"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
```

Avoiding the use of the provided function `apply_chat_template`, you can also interact with our model following the sample template. Note that `messages` should be replaced by your input.

```
User: {messages[0]['content']}

Assistant: {messages[1]['content']}<|end▁of▁sentence|>User: {messages[2]['content']}

Assistant:
```

**Note:** By default (`add_special_tokens=True`), our tokenizer automatically adds a `bos_token` (`<|begin▁of▁sentence|>`) before the input text. Additionally, since the system prompt is not compatible with this version of our models, we DO NOT RECOMMEND including the system prompt in your input.

### 3. License
This code repository is licensed under the MIT License. The use of DeepSeekMath models is subject to the Model License. DeepSeekMath supports commercial use.

See the [LICENSE-MODEL](https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL) for more details.

### 4. Contact

If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).